Adsorption News

次

Vol. 31, No. 4 (January 2018)

目

通巻 No.123

○巻頭言
○平成 29 年度日本吸着学会学会賞
○平成 29 年度大学院生研究奨励賞4
 ○フロントライン
 ○ホットトピックス
 ○吸着基礎シリーズ
○第31回日本吸着学会研究発表会開催報告
○第 31 回日本吸着学会研究発表会ポスター賞31
○第 27 回吸着シンポジウム(吸着夏の学校)報告35
○会告
○関連学会のお知らせ42
○維持会員一覧43
○フロントラインの掲載について43

日本吸着学会 The Japan Society on Adsorption

物質開発と吸着科学の進展

信州大学理学部 尾関 寿美男

日本吸着学会の発足は物質科学や吸着理論を志向す る基礎系の研究者と吸着プロセスを志向する技術系の 研究者とが混交してなされた。基礎・応用・実用の観 点を網羅するとともに、それらを融合する機運があっ たのではないかと思う。当時、助手として千葉大学理 学部に奉職し始めたばかりで、それまで携わってきた 溶液のコロイド化学を続けながら、無機酸化物の合成 やそれらへの気体吸着に取り組んでいた。ミクロエマ ルション中からの含水酸化鉄の合成やジャロサイトの 多孔化、それら無機酸化物の NO や SO2吸着能を平衡 吸着量から評価していた。実用的観点からは模擬大気 汚染ガスからの NO の流通法による除去を検討しては いたが、基礎的志向が強かった。

活性炭素繊維 ACF のミクロ細孔への吸着理論・解 析法が大いに発展し、疎水性ゼオライトやセピオライ ト、リン酸アルミニウムなどの結晶性ミクロ細孔物質 の吸着研究も進展した。また、メソ細孔性物質群の開 発は吸着理論の見直しやコンピューターシミュレー ションによる分子論的吸着機構の詳細にも踏み込んだ。 その後も、MOF や PCP の開発、CNT などの発見の たびに、新吸着現象が見いだされ、そのつど吸着シミュ レーション自体が見直され、新しい吸着メカニズムが 提案されてきた。この背景には、コンピューター制御 吸着装置や微小熱量精密測定装置の開発、吸着相への X線/中性子散乱法の適用による構造解析やスペクト ル測定手法の発展があり、吸着現象の飛躍的な理解の 深まりがあった。このように、新物質に対する吸着シ ミュレーションはもちろん、吸着理論に対しても物質 開発が先行し、新規細孔構造や新吸着現象の発見がな されてきている。理論的基盤が大いに確立されてきて いるので、予想に基づいた新展開、狙った細孔構造や 現象をデザインする素地は整いつつある。今にして思 えば、柔軟性細孔やハチの巣状メソ細孔、ゲート吸着 などの新型の吸着等温線などを志向する研究が先行し てバーチャルになされてもよかったのではないか。

吸着科学を先導する新物質開発は、いろいろな観点 からアプローチされる。新しい吸着現象やチャンピオ ンデータへの期待、新製法(外場や極端条件)による 新奇構造の誘導、添加物による相乗性の期待、設計性 の高いボトムアップ合成での精密構造制御、天然物の 模倣化学などである。また、高吸着密度や高選択性な どの高機能吸着を誘導するための極端な吸着条件(高 圧、磁場、電場)の適用などである。物質開発に吸着 技術が融合すれば、新吸着機能"製品"の開発へとつ ながる。

吸着の関わる喫緊の課題には、大気汚染などの今後 途上国で課題となりうるものを除くと、地球温暖化、 新エネルギー、原発処理があり、互いに関連している。 大気圏の CO₂を削減するための吸着材や CO₂処理技術 の開発、燃料電池用の高密度水素吸着材の開発、原子 力発電所における汚染水の浄化(放射性物質の超低濃 度溶液からの高選択吸着除去)への対応がある。これ らは材とプロセス、基礎と技術との協業なくしては達 成できない。日本吸着学会のさらなる活躍を期待した い。

「情熱なしに 為しうるすべては 無価値である。」 (マックス・ウェーバー)

仮面のビーナス

氏名	尾関寿美男	
所属	信州大学理学部	
略歴	昭和 51 年 3 月	名古屋大学理学部卒業
	昭和 56 年 3 月	名古屋大学大学院理学研究科
		博士後期課程修了(理博)
	昭和 56 年10月	千葉大学理学部助手
	昭和 61 年 7 月	千葉大学理学部講師
	平成元年3月	ワシントン大学(セントルイ
		ス)ポスドク(~平成2年2月)
	平成4年8月	千葉大学理学部助教授
	平成9年8月	信州大学理学部教授
	現在	に至る

平成 29 年度日本吸着学会学会賞

φ

Ъ

会員の皆様にご推薦をお願いしておりました平成29年度日本吸着学会学術賞、奨励賞(カルゴンカーボンジャパン賞)、技術賞につきまして、学会賞選考委員会における審議を経て、以下のように受賞者が決定されました。 第31回研究発表会に合わせて開かれました日本吸着学会総会において報告され、引き続き表彰式にて各賞の顕彰 が行われました。(各賞の受賞者名、団体名は五十音順)

学術賞

Ъ

黒田 泰重 氏 (岡山大学大学院自然科学研究科)

受賞対象研究:ゼオライトを利用した新奇電子状態の創出と小分子の吸着・活性化

黒田氏は、吸着・触媒材料として不可欠な物質であるゼオライトについて、その骨格及びその骨格構造が創り出 すサブナノ空間が交換イオンに新奇な電子状態を発現させる場として機能していると考え、新奇な現象を発現させ る要因の解明を目指した研究を展開した。

まず、銅イオン交換ゼオライトに注目し、高温真空処理過程における交換銅イオンの状態変化を調べ、水和二価 銅イオンは酸素架橋種を経て一価銅イオンに変化し、ゼオライト細孔内で安定に存在できることを示すとともに、 室温でさえ № 分子を強く吸着するという不思議な現象を世界で初めて見いだした。更に、この種は室温に於いて H₂ や Xe に対しても特異な吸着特性を示すことも見いだし、室温で機能する № 吸着剤及び Xe や CO などの選択 的吸着剤としての応用研究へと展開した。亜鉛イオン及びニッケルイオン交換ゼオライトについても、ゼオライト 細孔内で一価亜鉛種が形成されるという新奇な現象を見いだすとともに、超常磁性を示す微粒子金属 Ni 種の創製 に成功した。

以上の成果は、吸着科学のみならず、触媒科学や合成化学分野においてもサブナノ空間科学の新たな展開に大き く貢献するものであり、同氏の研究は日本吸着学会学術賞を授与するにふさわしいものである。

迫田 彰義 氏(放送大学 および 東京大学生産技術研究所)

受賞対象研究:環境問題の解決をめざした吸着プロセスおよび吸着剤の開発研究

追田氏は、吸着プロセスと吸着剤に関する基礎研究と共に、水環境やバイオマス利活用など幅広い分野における 環境問題の解決をめざした一連の応用研究を行ってきた。基礎研究においては、吸着分離は吸着プロセスと吸着剤 のマッチングが極めて重要であることに着目し、各種の気体や蒸気と種々の吸着剤の組合せについて、吸着平衡関 係、吸着速度、吸着熱のより正確な実測や推算について多くの成果をあげると共に、気相吸着や水溶液吸着におけ る吸着挙動の分子シミュレーションや圧力スイング吸着のプロセスシミュレーションでは工学的に極めて有用な手 法を開発した。一方で、活性炭素繊維、生物活性炭、疎水性ゼオライト等を用いた吸着操作による水処理において は、クロマト法モーメント解析などの化学工学的手法を用いて処理メカニズムを解明し、処理プロセスの数理モデ ル化、そして数理モデルを用いたシミュレーションによるプロセスの設計や操作等を行う一連の手法を開発した。 特に、活性炭素繊維による高度浄水処理、および疎水性ゼオライトを用いた吸着相オゾン酸化と、その水処理への 応用においては多くの成果を発表している。さらに、吸着のバイオマス利活用への応用においては、地域のバイオ マスをその地域のエネルギーや資材として利活用するシステム、プロセス、吸着を利用する要素技術の同時開発を 行い、パイロットプラント規模あるいは実機規模でいくつかの社会実証試験を実施した。特に、現地に適合したバ イオエタノールおよびバイオガスの吸着分離精製や、界面活性剤の吸着を利用したセルロース酵素糖化の促進に関 する研究は極めて新規性の高い研究と評価される。

以上の成果は、吸着現象を利用した環境問題を解決するための新たな技術として大きな注目を集めており、同氏

の一連の研究は日本吸着学会学術賞を授与するにふさわしいものである。

奨励賞(カルゴン カーボン ジャパン賞)

田中 俊輔 氏 (関西大学 環境都市工学部)

受賞対象研究:ゼオライト類似錯体の構造・形態制御と吸着特性に関する研究

田中氏は、ゼオライトに類似した結晶構造をもつ多孔性金属錯体を経済的に、かつ低環境負荷で合成することを 目的として、水のみを反応溶媒とする水系合成法を提案し、金属塩の種類や合成温度、原料濃度比の調整によって、 生成する結晶の粒子径や形態が制御できることを示すとともに、数十ナノメートルから数十マイクロメートルの範 囲で粒子径を精密に制御し、ゼオライト類似錯体の静的ならびに動的吸着特性に関する研究を行った。

多孔性金属錯体は、溶液中で固体析出・結晶化させて得られることが一般的であり、配位子が溶解する有機液相 中で合成される。一方、田中氏は、メカノケミカル法を利用することによって、微結晶が凝集した造粒物としてゼ オライト類似錯体が無溶媒で大量合成できることを提案・実証した。造粒によってハンドリング性が優れるととも に、微結晶の凝集によって形成された階層構造が有機物の吸着速度を向上させることを示した。この成果は、吸着 剤として実用化に向けた多孔性金属錯体の複合化や造粒・成形のさらなる拡充・進展が期待される。また、動的吸 着において、ゼオライト類似錯体を微粒子化すると、吸着速度が粒内拡散抵抗支配から粒子表面層における物質移 動抵抗支配になることを示し、造粒粒子や多結晶膜の結晶粒のサイズ制御が分離機能の精密設計において重要な因 子であることを明らかにした。

以上の一連の研究は、15報の論文等で発表されており、国内外で多くの注目を集めている。よって、日本吸着 学会奨励賞(カルゴンカーボンジャパン賞)を授与するにふさわしいものである。

技術賞

応募なし

平成 29 年度日本吸着学会大学院生研究奨励賞

日本吸着学会は、将来の日本の吸着関連分野を支える人材育成のため、吸着関連の研究で博士号取得を目指す学 生会員の研究中間成果と今後の研究計画に対して審査を行い、優秀と認めたものに対して研究奨励賞を授与して研 究を支援します。平成29年度は下記の2件が選ばれました。活躍を祈念いたします。

平出翔太郎 (京都大学)

「X線構造解析に立脚したソフト多孔性結晶が示すゲート吸着挙動の解明」

野村 啓太 (東北大学)

「弾性変形する多孔体を利用した応力による水の吸脱着制御と新規冷凍機への応用」

シリカを含むイネの籾殻を原料とした 多孔質炭素材料 Triporous™ (トリポーラス™)の吸着特性と応用

Adsorption properties and applications of porous carbon material "Triporous[™]" derived from rice husk containing silica

> ソニー株式会社 Sony Corporation

山ノ井 俊 飯田 広範 田畑誠一郎 Shun Yamanoi, Hironori Iida, Seiichiro Tabata

1. はじめに

現在、水や空気の環境浄化や、脱色・精製をはじめ とする様々な工業分野において、吸着技術は大変重要 であり、多くの技術者・研究者によって日々開発が進 められている。吸着技術を支える吸着材料には、活性 炭やシリカゲルやゼオライトをはじめとする様々な多 孔質材料が使われている。

ソニーは、余剰バイオマスであるイネの籾殻を原料 に用いた新素材"Triporous[™](トリポーラス[™])を開 発した。このトリポーラスは、ソニーの電池材料およ び環境技術の研究開発過程で生み出された新しい多孔 質炭素材料である。^{1.2}本稿ではトリポーラスを生み出 すきっかけとなった背景について述べた後、トリポー ラスの基礎的な構造および吸着特性と液相および気相 での応用例について報告する。

2. 開発の背景

20世紀後半以降のナノテクノロジーブームにおい て、炭素材料分野ではフラーレンやカーボンナノ チューブにくわえて、無機粒子や無機多孔質体を鋳型 に用いた多孔質炭素材料も多くのグループにより研究 がなされている。34この多孔質炭素材料は電気化学エ ネルギー変換デバイスやセンサの電極や触媒や医療分 野など、さまざまな分野での応用が期待されている。 一方で自然界には、シリカを多く含む植物が存在する。 イネの籾殻や藁だけでなく、大麦などの籾殻にもシリ カが存在する。さらには、ヨシ、タケ、ススキ、珪藻 など、含有量に違いはあるが我々の身近の馴染みある 植物にもシリカが含まれる。とくにイネの籾殻には重 量比で約20%のシリカを含むことが知られてい る。5.6 我々は、これらのバイオマスの中から、シリカ 含有量の多いイネの籾殻に着目し、これを原料に用い ることで新しい多孔質炭素材料ができないかと考えた。 つまり籾殻を天然の樹脂/シリカ複合体とみなして、 鋳型法による多孔質炭素材料と同様のコンセプトで、 天然物由来の多孔質炭素を創製しようと考えた(開発 当初はエネルギー変換デバイス用の電極材料を目的と していた)。検討の結果、イネの籾殻を原料に用いる ことで、マイクロ (2nm 以下)・メソ (2nm~50 nm)・マクロ(50 nm 以上)の領域にそれぞれ大きな 細孔を有する多孔質構造ができることを見出し、さら に従来の天然由来の活性炭とは異なる吸着特性も見出 した。^{7.8}弊社はこの3つの領域に細孔を持つ素材とい う意味を込めてこの多孔質炭素材料を"Triporous™

図2 トリポーラスの製造プロセスと細孔構造の概略

図4 シリカ除去処理前後におけるトリポーラスの EDX スペクトル(左:シリカ除去前 右:シリカ除去後)

図5 水蒸気賦活後のトリポーラスの SEM 写真

(トリポーラス[™])と命名し、ロゴマークにも3つの 細孔を表現した(図1)。

3. イネの籾殻を原料としたトリポーラスの製造方法

トリポーラスの製造方法と細孔構造の概略を図2に 示す。イネは生育している土の中に存在するSi(OH)4 (ケイ酸)を吸い上げ茎や籾殻に蓄積する。とくに籾 殻にシリカが蓄積され、その重量含有率は約20%で ある。

細胞レベルの拡大図にも示すが、トリポーラスは、 籾殻を炭化後にシリカを除去した後、賦活処理を行う ことで製造される。⁴ 図3のSEM写真から除去処理 前の炭化物には細胞間層のシリカが確認できる(a-c)。 とくに細胞表面には小さいシリカが多く蓄積している。 除去処理後はシリカ構造を反映した凹凸構造が観察で きる(d-f)。シリカ除去によって、図2の拡大図に

種類	形状	N2-BET 比表面積 (m ² /g)	充填密度 (g/cm ³)	BJH 細孔容積 (cm ³ /g)	MP 細孔容積 (cm ³ /g)	全細孔容積 (cm ³ /g)
	粒状	966	0.11	0.5	0.35	0. 78
トリポーラス	粒状	1057	0.24	0.39	0.38	0.75
	ペレット状	964	0.26	0.65	0.27	0.95
ヤシガラ系A	粒状	929	0.51	0.06	0.4	0.41
ヤシガラ系B	粒状	1138	0.46	0.1	0.47	0.52
石炭系A	破砕状	1038	0.43	0.19	0.51	0.55
石炭系B	ペレット状	1049	0.46	0.1	0.46	0.48
木質系	粉末状	1311	0. 19	0.65	0. 64	1.01

表1 トリポーラス代表的なサンプルと各種活性炭の窒素吸着法による評価結果まとめ

も示すような、約1μmのマクロ孔と、浅いメソ孔が 形成されることが分った。図4のEDX測定結果に示 すように、シリカ除去後にはケイ素と酸素のピークが 無くなることも確認できた。最終的に、シリカを除去 した炭化物をさらに水蒸気で賦活処理することによっ て、2nm以下のマイクロ孔と、さらに深いメソ孔が 生成される。賦活後のSEM観察でも、メソ孔の凹凸 構造が確認できた(図5)。

4. 窒素吸着法によるトリポーラスの細孔構造

窒素吸着法で行った代表的なトリポーラスと、市販 の各種活性炭の各種パラメータを表1示す。比較とし

図7 トリポーラスおよび活性炭の水銀法による細孔分布曲線

て入手した活性炭はヤシガラ系(粒状)、石炭系(破 砕状・ペレット状)、木質系(粉末状)である。トリ ポーラスの N₂-BET 比表面積については他の活性炭と 比較してほぼ同等の面積を示している。トリポーラス の特徴的なパラメータは、充填密度が低いことと、メ ソ孔容積を反映している BIH 細孔容積の値が大きい ことである。マイクロからメソ領域の細孔を連続的に 評価可能な NLDFT 法による細孔分布図を図6示す。 細孔直径2nm 以下のマイクロ孔に関しては、ヤシガ ラ系や木質系と比較すると若干低い値となるが大きく 空いていることが確認できる。2nm~50nmのメソ 孔に関しては、トリポーラスは5~10 nm にピークを 持つ特徴的なメソ孔が存在していることが確認できた。 水銀圧入法による細孔分布図を図7示す。トリポーラ スは比較活性炭と比べてメソからマクロにかけて大き な細孔を有していることが確認できた。以上の評価結 果から、トリポーラスにはマイクロ・メソ・マクロと いう3つの領域に大きな細孔を有することが確認でき た。

5. トリポーラスの基本吸着性能

トリポーラスの基本的な吸着性能については、JIS 法によるヨウ素の平衡吸着特性とメチレンブルーの平 衡吸着特性評価を行った(図8)。比較として表1に 示したヤシガラ系Aを用いた。単位重量あたりの面積 がほぼ同等であることから、ヨウ素吸着量においては ほぼ同等の値を示したがメチレンブルー(分子量: 320)の平衡吸着量評価についてはトリポーラスが大 きい吸着量を示した。

ドデシルベンゼンスルホン酸ナトリウム(DBS)を 用いた評価については、平衡吸着特性だけでなく吸着 速度の評価結果も示す(図9)。平衡吸着量について は、メチレンブルーと同様活性炭(ヤシガラ系A)と 比較して2倍以上の吸着量を示した。吸着速度試験に ついてはより大きな差を示すことが確認できた。吸着 量と時間の関係から、粒子内の拡散係数を算出したと ころ、トリポーラスにおいて10⁻⁶cm²/s、ヤシガラ 活性炭において10⁻⁷cm²/sとなり、トリポーラスは 吸着容量だけでなく、速い吸着速度を示すことが確認

図9 DBSを用いたトリポーラスおよび活性炭の吸着速度評価

図10 トリポーラスと各種活性炭のフラーレンC70の平衡吸着挙動

できた。ここまでの評価結果より、トリポーラスの基本的な特徴は、①分子量の大きな分子構造体に対する 高い吸着容量 ②速い粒子内拡散に起因する高速吸着 性があると言える。

最後に、トルエン中に溶解したフラーレンC70の 120hの平衡吸着評価結果を示す(図10)。フラーレ ンC70を直径約1.1nmの球状モデル物質とみなし、 各分野で使用されている活性炭(N₂BET比表面積は それぞれ1150m²/g~1450m²/g)と、トリポーラ スの吸着容量の比較を行ってみた。トリポーラスはい ずれの活性炭よりも高い吸着性能を示した。この結果 からもトリポーラスは世の中の様々な大きな有機物質 に対し高い吸着性を示すと考えている。

6. 液相におけるトリポーラスの応用

トリポーラスの細孔構造を活かした液相での応用実 験結果を以下に報告する。まず塩素や DBS の水溶液 を用いた除去特性を図 11 示す。これらの実験は、同 体積のトリポーラスとヤシガラ系Aを用いて、実際の 浄水フィルターを模した評価を行った。分子量の小さ い塩素での性能差は小さいが、分子量の大きな DBS 系の除去能においては大きな差を示すことが確認でき た。このようなトリポーラスの水浄化特性は、途上国 や新興国の浄水器および非常時用の浄水器に強みを発 揮すると考えている。今後実用化を進めるためには、 フィルター成型加工技術の検討も必要と考えている。

トリポーラスは活性炭と比較して大きな有機分子だけでなくアレルゲンのようなたんぱく質へも大きな吸着性を示す。ネコアレルゲンを溶かした水溶液に、トリポーラスまたは活性炭添加前後におけるアレルゲンの濃度を ELISA 法を用いて定量評価を行った結果を図12 に示す。アレルゲンの吸着においてもトリポーラスは活性炭よりも高い吸着性を確認できた。ネコ以外のイヌやスギ花粉のアレルゲンにおいても、トリポーラスは活性炭よりも高い吸着性を示すことが確認できている。アレルゲンをはじめとする液相でのタンパク質の吸着特性も、トリポーラスの特徴のひとつと

図 15 トリポーラスのバイオ電池用電極としての繰り返し特性

考えている。

トリポーラスのインフルエンザウイルスの分散液を 吸着評価試験結果を図13に示す。比較活性炭よりも 2桁の感染価を下げることが確認された。インフルエ ンザウイルスは直径約100 nm である。トリポーラス は100 nm 以上に大きな細孔が空いているため、比較 活性炭よりもウイルスが粒子内部に拡散しやすいと考 えられる。本実験と並行して、ウイルスのスパイクタ ンパク質(ノイラミニダーゼ)を使って、トリポーラ スと活性炭の吸着量比較を行ったところ、トリポーラ スが5倍ほど活性炭よりも高いことを確認した。本結 果は、トリポーラス内部への粒子拡散だけでなく、ト リポーラス表面のスパイクタンパク質に対する高い吸 着も作用したと考えている。

トリポーラスの菌の除去特性についても図14に示 す。1 mL あたり4600 個の大腸菌が分散した水10 mL を、トリポーラスおよび比較のヤシガラ系活性に通水 した後の水中の大腸菌の量を定量した。ヤシガラ活性 炭では560 個/mL ほど大腸菌が存在していたのに対 して、トリポーラスでは検出限界の1 個/mL 以下で あった。大腸菌は通常短軸0.4-0.7 µm、長軸2.0-4.0 µm の大きさであることが知られているが、マク 口孔の大きなトリポーラスには活性炭よりも多くの大 腸菌が捕捉されたことが考えられる。別途除去後のト リポーラス上の大腸菌の生存を確認したところ、生存 していることが確認された。ウイルスにおいても大腸 菌の評価系においても、処理後の水中の存在数は比較

活性炭に比べてトリポーラスが非常に低いことから、 トリポーラスはより安全な水を提供できる炭素材料で あると考えられる。また一方で、微生物の担体として の応用も考えられる。

図15にトリポーラスをバイオ電池用の電極に用い た結果を示す。グルコースを燃料とするバイオ電池の 電極には、多孔質な炭素材料や炭素微粒子が用いられ ている。炭素表面には、メディエータや酵素の固定化 が必要であり、速い電子移動反応と長寿命化を実現す る電極構造が求められている。様々な活性炭を含む多 くの炭素系材料をバイオ電池電極として検討した中で、 トリポーラスが最も優れた繰り返し特性を示した。⁹ トリポーラスの特徴的な細孔に酵素とメディエータ分 子の配置が最適化されたことに起因すると考えている。 この結果はトリポーラスが、電気化学センサや、酵素 や微生物の担持されたバイオリアクター応用の可能性 もあると考えている。

7. 気相におけるトリポーラスの応用

トリポーラスの気相での応用を考えた際、まず除去 対象ガスと化学反応する薬剤を添着する使用方法が考 えられる。実際の公共施設での脱臭フィルターや、半 導体工場などの外調フィルターでは、用途に合わせた 薬剤が添着された活性炭が使用されている。同じ条件 で3Mのリン酸水溶液に浸漬したトリポーラスと活 性炭(ヤシガラ系B)の、同じ空間速度におけるアン モニアの除去率の変化を比較した実験結果を図16に 示す。トリポーラスは活性炭よりも大きなメソ孔やマ クロ孔が存在するために、より多くのリン酸が添着で きるため、同体積での比較においても活性炭よりも長 い寿命を示すことがわかった。

図 16 リン酸を添着したトリポーラスと活性炭のアンモニアの 通気試験除去特性(SV=120,000)と薬剤添着のイメージ

薬剤を添着しない場合においては、トリポーラスに は大きな細孔が大きく空いているため大きな有機物質

図18 インフルエンザウイルス(H1N1 A型)を含有したエ アロゾル透過前後における感染価の比較

を吸着しやすい構造であると考えられる。具体的な応 用の可能性としては、高沸点有機分子の除去や溶剤回 収など充填フィルターへの応用が考えられる。等重量 での比較ではあるが、時間初期のトリポーラスが活性 炭よりも早く吸着するという評価結果も得ている(図 17)。このような特性は、薬剤添着技術を用いない宇 宙船内の空気浄化への適用も考えられている。¹⁰

トリポーラスおよび活性炭(ヤシガラ系 B)のウイ ルス含有エアロゾルを用いたウイルス除去試験の結果 を図18に示す。直径18mm長さ80mmのカラムに、 同粒径のトリポーラスまたは活性炭を充填し、SV= 12,000でインフルエンザウイルス含有のエアロゾル を透過させた。透過前後における空気中のウイルス感 染価を比較したところ、粒子内の大きな細孔のトリ ポーラスのほうが比較活性炭よりも高いウイルスの除 去率を示した。比較活性炭との差については、トリポー ラスの大きな細孔の存在が作用したと考えている。

8. おわりに

本稿では、弊社が開発したイネの籾殻を原料とした トリポーラス[™]の基本特性とその応用について述べ た。現在イネの籾殻は、日本国内だけで年間約200万 トン以上排出されている。本技術は、余剰バイオマス 利用による環境に配慮した循環型社会への貢献に加え、 新たな産業と市場をグローバルに創造できる可能性を 有していることが認められ、2014年に公益社団法人 発明協会全国発明表彰において「21世紀発明奨励賞」 を受賞した。¹¹トリポーラスの吸着技術で、世の中の さまざまな環境課題解決に貢献したいと考えている。

※本稿およびトリポーラス[™]に関するお問い合わせ は Seiichiro.Tabata@sony.com まで

[参考文献]

- 1) ソニー(株) ニュースリリース https://www.sony.co.jp/SonyInfo/News/Press/ 201405/14-056/index.html
- 2) ソニー(株) CSR レポート 将来に向けた環境 技術

https://www.sony.co.jp/SonyInfo/csr_report/ environment/technology/development.html

- 3) A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, V. G. Ralchenko, *Science* 282, 897 (1998).
- 4) R. Ryoo, S. H. Joo, M. Kruk, M. Jaroniec, *Adv. Mater* **13**, 677 (2001)
- 5) J. F. Ma and E. Takahashi, Soil, Fertilizer, and Plant Silicon Research in Japan, 1st edn, Elsevier, Oxford, Amsterdam, 2002. pp 5-180.
- 6) H. A. Currie and C. C. Perry, Annals of Botany, 2007, 1.
- 7) S. Tabata, H. Iida, T. Horie, S. Yamada, *Med. Chem. Commun.* **1**, 136 (2010).
- 8)特許第4618308号: 多孔質炭素材料及びその製造方法、並びに、吸着剤、マスク、吸着シート及び担持体
- 9) S. Fuijita, S. Yamanoi, K. Murata, H. Mita, T. Samukawa, H. Sakai, Y. Tokita, *Sci. Rep.* 4, 4937 (2013)
- 20) 桑垣整、立原悟、大西充:オゾン酸化活性炭と減 圧 PSA による気中アンモニア除去、第61回宇宙 科学技術連合講演会要旨集 JSASS-2017-4145
- 11) 月刊発明 2015 年 6 月号 p 14-p 17.

山ノ井 俊 ソニー株式会社 知的財産センター ビジネスプロデューサー

- 2007年3月 東京大学理学部化学科卒業
- 2009年3月 東京大学理学系研究科化学専攻修士課 程修了
- 2009 年 4 月 ソニー株式会社入社 現在に至る

飯田 広範ソニー株式会社知的財産センター博士(工学)

- 2008 年 3 月 早稲田大学大学院理工学研究科博士後 期課程修了
- 2008 年 4 月 ソニー株式会社入社 現在に至る

田畑 誠一郎
 ソニー株式会社
 知的財産センター
 テクノロジーエバンジェリスト
 博士(工学)

- 2001年3月 横浜国立大学工学部物質工学科卒業
- 2005年4月 日本学術振興会特別研究員
- 2006年3月 横浜国立大学大学院工学府博士課程後 期修了
- 2006年4月 ソニー株式会社入社 現在に至る

バイオ燃料電池の基礎と多孔性炭素の構造 制御による高性能酵素多孔性電極の開発

Desining porous carbon structure and its application to enzymatic biofuel cells

> 筑波大学 数理物質系 Faculty of Pure and Applied Sciences University of Tsukuba

> > **辻村 清也** TSUJIMURA Seiya

1. 酸化還元酵素とバイオ燃料電池

酵素とは触媒機能を有するタンパク質であり、生体 に関連する化学反応すべてを起こしているといって過 言ではない。酵素は特定の反応物(基質)を認識し、 産物に変換する。この反応は酵素の活性部位でおこな われる。酵素は3000種類以上が知られており、すべ ての酵素の特異的な作用に基づいて6つのカテゴリー に分類されている。そのひとつが酸化還元反応を担う 酸化還元酵素であり、生体内のエネルギー代謝、物質 代謝に関与している。以下、本稿で述べる酵素とは断 りがない限り酸化還元酵素のことを指す。

酵素は酸化剤と還元剤の酸化還元反応(電子移動反 応)を触媒するが、反応物の一方に電極を用いること ができる。言い換えると、酵素反応と電極反応を共役 させることで、酵素を電極触媒として利用できる。例 えば、グルコースを特異的に酸化する酵素を用いた場 合、酵素はグルコースから電子を受け取り、その電子 を電極に渡すことで酸化電流が流れる。グルコース濃 度に依存する電流(あるいは電気量)が得られるので、 この仕組みは血糖センサに応用されている。

本稿で紹介するバイオ燃料電池とはこのような酸化 還元酵素を電極触媒として用いる燃料電池の一種であ る。酵素を用いているために非常に穏やかな条件下(中 性付近のpH、常温、常圧)において、高エネルギー 密度でありながら安全性の高いエネルギーキャリアで ある糖や有機酸などから発電できる(図1)^{1).2)}。電 池の負極(アノード)において、燃料の酸化反応を触 媒する酵素の作用により、燃料は酸化され電子は電極 にわたる。正極(カソード)にて、酵素により酸素が 水に還元される。酵素は反応の選択性が高いために、 アノード用酵素は酸素とは反応せず、またカソードに おいても負極燃料とは反応しない。また酵素は再生可 能な触媒であり、資源、環境の観点からも持続可能な

図1 バイオ燃料電池

発電デバイスといえる。電池の起電力は電極と反応す る酸化還元種(酵素あるいは酸化還元メディエータ) の酸化還元電位差によって決定され、最大電流は物質 輸送あるいは酵素反応速度で決まる。開発中のバイオ 燃料電池は0.6~0.9 V程度の起電力を有しており、 電極幾何面積当たり数 mA/cm⁻²程度の電流が流れる。 電極材料としては、酵素電極反応として用いるのに適 した電位窓、物理的・化学的強度と安定性を考慮する と炭素が適しているといえる。さらに価格・資源性の 観点からも優れており、加えて毒性もなく生体適合性 も高い。なお、糖を燃料として発電する場合、無機(貴 金属)触媒ではその出力および耐久性は低く、なによ り中性付近での作動が困難であるので、酵素を用いる 必要がある。

先述のとおり、バイオ燃料電池は酵素と炭素電極と いう非常にシンプルな構成である。原理上はカソード とアノードの反応を隔てる膜が必要ないので、電池デ ザインの自由度が高い。電子機器デバイスの小型化、 超低消費電力化が進む中、電源の小型化も強く望まれ ており、非常にシンプルな構造である酵素バイオ燃料 電池はmmからumスケールという小型化に向いて いる1).3)。高い生体親和性および安全性をいかした生 体埋め込み型やウェアラブル型デバイス用の電源、あ るいは外部電源を必要としない自己駆動型(自立型) センサとしての応用など4)、従来の電源では実現が難 しいようなケースでの電力供給は、新たなイノベー ションに結びつくものと期待を集めている。このよう に魅力的な応用が期待されるが、バイオ燃料電池の実 用化に向けて解決しなければならない最優先技術課題 は、出力および安定性(寿命・耐久性)の向上である。

燃料が十分に存在する場合の幾何表面積あたりの電 流密度は、酵素担持量と酵素の電極触媒活性(酵素の 基質との反応速度と界面の電子移動速度)の積によっ て決まる。すなわち、酵素は生理的な環境とはまった く異なる電極上にて、電極との速やかな電子移動反応 を実現しなければならない。しかし、多くの酵素でそ の活性部位はタンパク質の殻に埋め込まれており、電 極反応を実現することが容易ではない。これが低い出 力と関係している。また、タンパク質である酵素は、 構造変化や分解により、活性を失う。他にも、電極上 での酵素の凝集、電極表面からの脱離が電池の耐久性 を決める要因として挙げられる。

このように酵素を電極触媒として働かせるためには、 様々な課題がある。電流値の向上には高い(電極)触 媒活性を有する酵素の探索・開発(スクリーニングや タンパク質工学的改変など)のみならず、その酵素の 機能を十分に発揮することのできる構造および表面の 制御された電極の開発が重要となる。さらに幾何表面 積あたりの電気化学活性のある酵素量を効果的に増や すための3次元構造の設計も併せて検討しなければな らない。

2. 電極と酵素の反応

電池への応用を進める場合、酵素と電極との反応性 や経済性の観点から、酵素は電極上に固定化されなけ ればならない。加水分解や異性化などの"固定化"酵 素は、工業プロセスにおいて酵素の再利用の点、およ び酵素と反応物の分離という点でコストを大幅に低下 し、生産性の向上に貢献している。また、細胞を酵素 の "袋"とみなし、細胞そのものを固定化する方法は、 酵素を精製する手間を省くことができ、安定に固定化 するという点で有効である。しかし、酸化還元酵素を 電極触媒として用いる場合、他のカテゴリーの酵素と の大きな違いは、酵素と電極間の電子移動を速やかに 達成しなければならないという点である。酵素の活性 部位と電極間の電子移動距離が遠くなるとその速度 (=電流)は低くなる。この酵素と電極間の電子移動 は、図2のように、直接型電子移動(DET)とメディ エータ型電子移動(MET)に分類することができる。 次に、それぞれの原理を説明し、性能向上にむけた電 極材料の開発について紹介する。

メディエータ型

図2 酵素電極反応: (左)

メディエータ 直接電子移動型反応、(右)

3. 直接電子移動反応

効率的な酵素と電極間の DET 反応が実現できれば、 電池は酵素と電極のみで構成され、次に述べる MET 型反応をベースとする電池と比較して、シンプルな電 池を実現することができる^{1),2)}。この場合、出力や劣 化を決定する要因を特定することが容易になり、反応 系をデザインしやすい。また、メディエータを介さな いので、電位のロスが少なくなり、電池の作動電圧の 向上が期待されるという利点が挙げられる。しかし、

酵素と電極との DET 反応が実現できるかどうかは、 酵素の構造に大きく依存する。すなわち、電子移動速 度は電子移動距離に対して指数関数的に減衰し、タン パク質系における長距離電子移動距離は長くとも1.5 nm 程度とされている。一般に絶縁性のタンパク質の 殻に深く埋め込まれている酵素の活性中心は電極と直 接反応することは困難である。しかし、酵素表面付 近に活性中心あるいは電子伝達レドックス部位を有し ている酵素は、電極と直接反応することができる。さ らに DET 反応を実現できるかどうかは電子移動距離 が最小となるように酸化還元部位が電極表面に向いて 吸着する(配向性)必要がある。。

4. 直接電子移動反応の高効率化:配向性制御とナノ 構造

酵素の炭素電極上への固定化は、水素結合・疎水的 な相互作用・静電的相互作用・ファンデルワールス力 などによる吸着、クロスリンカーなどを用いる共有結 合、酵素同士の架橋などによってなされる。吸着配向 の制御にむけて、酵素の活性中心との特異的な相互作 用を高める基板の表面修飾に関する研究が進められて いる。例えば、ラッカーゼという酸素を水に還元する 酵素の配向制御に関する研究において、疎水性が強い 活性部位ポケットと親和性の高いアントラセンを炭素 電極表面に修飾することで、酵素の活性中心が電極に 配向し、なおかつ安定性も高まる(図3(a))⁷⁾。また、 同様の酸素還元触媒活性を示すビリルビンオキシダー ゼという酵素では、活性部位が正電荷を有しており、 電極表面にカルボキシ基を有するナフタレン誘導体や 酵素元来の反応物であるビリルビンを修飾することで 静電的な相互作用により酵素の配向性が向上しDET 反応が促進される。逆に電気化学活性部位が負電荷 をもつ酵素に対しては、炭素表面にアミノ基を有する 分子を修飾することで正電荷を導入できる。このよう に酵素に応じた炭素電極表面をデザインすることによ り、配向性を向上させることが可能となる。その他、 酵素のアミノ基と反応するサクシニミジルエステルを 化学修飾したピレンを炭素表面に吸着させることで酵 素を電極表面に結合できる。また、炭素表面と特異的 な相互作用を持たせる "タグ"をタンパク質工学的に

図3 配向制御技術:(a)電極表面にレドックスサイトとの相互 作用を持つ分子を修飾する、(b)レドックサイト付近に基板との 相互作用を持つタグをタンパク質工学的に導入する

酵素の狙った部位に修飾することも可能である(図3 (b))。ラッカーゼの活性部位近傍に6つのヒスチジン が連結したタグを修飾することで炭素表面(カルボキ シ基などによる負電荷)と相互作用を持たせることで 酵素の配向性を制御できる⁹⁾。また、疎水的なアミノ 酸からなるタグを修飾することで、疎水的な表面との 相互作用を増強させることで、配向性を制御すること も可能である。

高効率化に向けた別の戦略として、電極のナノ構造 化が挙げられる。ナノ構造化することによって期待さ れる効果として、

- (1) 電極構造をナノ構造化することで、酵素の酸化還 元活性部位と電極間の電子移動距離を短くする
- (2) 細孔内に酵素を包括的に固定化することで、酵素 がランダムな向きで吸着しても、活性部位と電極と の距離が近くなる確率を向上させる

があげられる。もちろん、(1)と(2)を組み合わせ、さら には先述の配向性制御技術との組み合わせにより、さ らに電子移動効率は向上することが期待される。

このように、電極や酵素の表面修飾や構造制御を行 うことで、個々の酵素の利用効率は向上するが、物質 供給の観点における(マイクロメートルスケールで の)平坦な電極では、得られる電流値は、mA cm⁻² のオーダーである。例えば、酵素を直径 10 nm、触媒 活性を 1000 s⁻¹とし、平坦な電極に密に吸着しそのす べてが電極触媒として利用できたとしても触媒電流値 は 1.2 mA cm⁻²である。実用的なレベルまで電流値 を向上させるためには、3次元構造化による幾何面積 あたりの酵素修飾量を増やす必要がある。しかも酵素 に燃料を送り届ける速やかな物質輸送を可能にするマ クロ孔を併せ持つ必要がある。このようなナノーメソ -マクロの階層構造の設計が重要となる(図4)。

図4 多孔質炭素材料設計指針

5. 直接電子移動を促進する電極材料(1) ナノカーボン 近年、カーボンナノチューブ(CNT)に代表され るナノ構造を有するカーボン材料が格段に手に入りや すくなり、酵素との組み合わせた研究が進展した。最 も簡便な電極作製方法は、このような炭素材料をその まま、あるいは結着剤(バインダー)とともに集電体 上に塗布する。そうすることで炭素材料のすき間はナ ノからメソスケールの空間となり、多孔性炭素電極を 得ることができる。結着剤として、ポリフッ化ビニリ デン(PVDF)、テフロン、スチレンブタジエンゴム (SBR)などが用いられている。炭素微粒子を結びつ けるバインダーの特性、バインダーと炭素材との割合、 それらを混合させる溶剤などを調整することで、炭素 電極の特性をコントロールすることができる。しかし、 この方法では細孔径を自由に制御することが容易では ないという難点はある。本稿ではカーボンブラック、 CNT について紹介する。

カーボンブラックは大変安価であり、様々な構造・ 表面を有するカーボンブラックがすでに発売されてい る。筆者らは、ケッチェンブラック(KB)を用いた 酵素電極をまず検討した。KBは中空構造を有してお り、高い比表面積を有している。一次粒子径は40 nm ほどであり粒子が凝集して形成されるストラクチャー 構造あるいは粒子が壊れて露出した中空部分が酵素の 吸着に機能していると考えられる。PVDF などのバ インダーと炭素材料を混成したインクを導電性基板上 に塗布、あるいは印刷することにより、電極を作製で きる。フルクトースを酸化するフルクトースデヒドロ ゲナーゼは平坦な電極では数μA cm⁻² 程度の DET 型 フルクトース酸化電流密度であるが、KB を修飾した 電極を用いることにより、電流値が 1000 倍程度増加 した¹⁰。

CNT を用いたバイオ電極の研究も活発になってい る¹¹⁾。CNTを酵素電極として利用する利点は、高い 導電性を有し表面積を増加させることができる点のみ ならず、表面あるいはエッジを化学修飾することによ り酵素の固定化の安定性向上を可能にする点である。 また直径1nm 程度のSWCNT が酵素内部に埋もれた 活性中心と電極間の電気的な導通をとり DET を実現 する可能性があるという点は特筆すべきである。基板 に吸着した酵素間の相互作用によって失活する場合、 円柱構造の CNT 表面に吸着した酵素同士は密着する ことなく、酵素間の相互作用が平板に比べ弱く、安定 性は向上する¹²⁾。CNT 電極の作製には、CNT を溶液 に分散させて導電性基板上に塗布する方法が一般的で ある。CNT の集合体でできた構造体の細孔構造を制 御することは困難であるが、CNT の有するナノ構造 の利点を活用するためには CNT 長さは、酵素との接 触面積を増やすという点で重要な因子となる。長さの 異なる SWCNT を用い、水素を酸化するヒドロゲナー ゼという酵素の電極触媒活性を調べたところ、短い SWCNT を用いた場合に DET 活性が観測されてい る¹³⁾。短い SWCNT によりナノ構造ネットワークが形 成され、酵素と電極の接触性が向上することにより DET 活性が上がった。

基板上に MWCNT を鉄触媒とアセチレンから

CVD 法で合成し酵素電極とすることもできる。特筆 すべきは、CNT の間隔を精密に制御したスーパーグ ロースカーボンナノチューブフォレスト(CNTF)に 酵素を浸透させて、穏やかな条件で乾燥させることで 得られた酵素内包 CNT シートである¹⁴⁾。フルクトー スデヒドロゲナーゼやラッカーゼを修飾し、DET 反 応に基づく高い触媒電流密度と電池の安定性の向上 (1日の連続運転で出力は 16%の減少)を同時に達 成している。

6. 直接電子移動を促進する電極材料(2):細孔制御型 メソ孔カーボン

このように KB や CNT は電極性能向上に非常に優 れた材料であるといえるが、形成される細孔はランダ ムであり、有効に利用できないデッドスペースは電池 の性能向上の妨げになっていた。さらなる性能向上に むけた材料設計指針を得るために、KB 以外のカーボ ンブラックで検討したが、材料によって、表面化学種、 色素吸着量、BET 比表面積、細孔サイズが大きく異 なり、系統的に因子を検討することが困難であった。 そこで細孔サイズ (微小構造) に注目し、その細孔サ イズの制御を検討した。

しかし、5-10 nm というサイズの酵素を効果的に 吸着できるような炭素材料はあまり知られていなかっ た。メソスケールの細孔を形成するために、メソポー ラスシリカ、ゼオライト、酸化マグネシウム等を鋳型 にしたメソ多孔体炭素がすでに多数知られているが、 既存のメソ孔炭素の細孔径が小さいため酵素担体とし てメソ孔が有効に利用されてはいない。例えば、メソ 孔シリカを鋳型にして得られる多孔質炭素の平均直径 は 5 nm である。

そこで筆者らは、比較的容易にメソ孔径が制御でき るカーボンゲル(CG)に注目した¹⁵⁾。CGは、含水有 機ゲルを凍結乾燥あるいは超臨界乾燥処理を行い、炭 素化を行うことで得られる。前者はカーボンクライオ ゲル(CCG)、後者はカーボンエアロゲル(CAG)と よばれる。CGの細孔サイズは、触媒とレゾルシノー ルの仕込み比で決まり、100 nm 程度まで自由に細孔 サイズを調整することができる¹⁶⁾。焼成温度などの調 製条件をそろえることで、表面官能基などをそろえる ことができ、細孔サイズの酵素電極応答への影響を調 べるのに適している。KBと同様に、CGを粉砕した 微粒子を PVDF などのバインダーと混成したインク を集電体上に塗布することで、多孔質炭素電極を得る ことができる。

こうした材料を用いることで、まずタンパク質の吸 着には細孔サイズが重要なファクターであることも明 らかになった¹⁶⁾。アルブミン(66 kDa、比重を1.2g /m³の球と仮定し計算するとその分子サイズは 6 nm)、乳酸脱水素酵素(140 kDa、8 nm)、カタラー ゼ (232 kDa、 9 nm)、フェリチン (440 kDa、11 nm)、 チログロブリン(669 kDa、12 nm)の様々なサイズ のタンパク質を用い、その吸着能を平均細孔直径が約 22、32、44、60 nm(注:窒素吸脱着等温線をスリッ ト状の細孔と仮定した BJH 法による解析値)の CCG で調べたところ、孔のサイズが小さい22nmのCCG では 66 kDa のタンパク質しか吸着できないが、44 nm の CCG では、66、140、232 kDa のタンパク質を吸着 し、60 nmのCCGに至っては、すべてのタンパク質 を吸着することができた(図5)。細孔サイズが酵素 サイズよりも同等あるいは小さい場合、そのタンパク 質吸着量は非常に小さい。細孔サイズがタンパク質サ イズの数倍大きい場合、そのタンパク質の吸着力は非 常に強い。細孔サイズが大きいものは小さいタンパク 質も吸着できる。これは炭素表面との相互作用だけで なく、タンパク質同士の相互作用によるものであると 考えられる。このように細孔サイズを制御することで、 分子篩として利用できる可能性が示唆された。

図5 タンパク質サイズと細孔サイズの関係 (タンパク質が炭素に吸着されるとバンドが消失する)¹⁶⁾

フルクトースデヒドロゲナーゼを用い CG 電極での 電気化学的フルクトース酸化反応について紹介する。 平均細孔直径が約10、22、32、56、80 nm となるよ うに調製した CCG をグラッシーカーボン上に修飾し、 フルクトースデヒドロゲナーゼ(分子量 140 kDa)を 吸着させて DET 型フルクトース酸化触媒電流を観察 した結果、電極の細孔が大きくなるに従って電流値も 増加するという結果が得られた¹⁷⁾。また、平均細孔直 径 60 nm の CCG を用いた場合、触媒電流の CCG の 粒子サイズの依存性を調べると、電流が粒子の投影表 面積ではなく粒子体積に依存していた。このことより、 炭素粒子内部に形成された細孔にも酵素が吸着し、酵 素触媒電流に寄与していることが分かった180。粒子径 が大きいほど粒子内部でのフルクトースの枯渇が生じ やすくなっており、電池への応用を考えた場合につい ては、粒子のサイズについても留意しなければならな いことが示唆された。

また、様々なマルチ銅オキシダーゼの DET 型カ ソードについても、HOPG 電極に酵素を修飾した場 合では 200 μA cm⁻² 程度であった酸素還元電流密度も、

CG 電極に酵素を修飾することにより、酸素の拡散が 律速となる大きな電流値(8000 rpmの電極回転速度 で10 mA cm⁻²)を得ることができている¹⁹⁾。CAG を 電極材料に用いると、KB と比較してより大きな電流 値を得ることを示した。また、大変興味深いことに、 溶液中ではラッカーゼの活性が5日で半減するのに対 して、多孔質炭素に固定化した酵素は常温で10日の 連続運転にも耐えることができている。メソ孔に酵素 が入ることによって酵素が安定されたと推察されるが、 今後さらなる検討が必要となる。他にも、大腸菌由来 の CueO やビリルビンオキシダーゼを CCG に修飾す ることで KB よりも電流値が向上している²⁰⁾。筆者ら は、2007年に多孔質炭素を活用した DET 反応にもと づいた高性能バイオ燃料電池を発表している21)。ア ノードにはフルクトースデヒドロゲナーゼ、カソード には白色腐朽菌由来のラッカーゼを用いている。出力 向上を目的として、アノードには KB、カソードには 44 nmの細孔を有する CAG を用いた。静止溶液では 0.3 mW cm⁻² 程度の出力密度であり、カソードでの 酸素供給が律速となっていた。溶液を撹拌することで 0.8 mW cm⁻²の出力が得られた。ただし、この性能 は、カソードの酸素の供給律速であった。炭素上への 効果的な酵素の固定化だけではなく、炭素上の酵素へ の速やかな酸素供給を可能にするガス拡散型電極の開 発が電池性能向上には避けられない。従来の固体高分 子型の燃料電池などと異なり、電解質は液体であるこ とが多く独自の設計が求められる。筆者らは、疎水的 なテフロンをバインダーとして利用し、KB との混合 比を変え電解質溶液の浸透性(親水性)と酸素の透過 性(撥水性・疎水性)のバランスを最適化することで 高性能な空気拡散型電極を報告している²²⁾。ポンプや ファンなどの補機を用いないパッシブ型カソードは 20 mA cm⁻²という非常に高い酸素還元触媒電流密度 を常温、常圧で達成している。

このように、酵素サイズより大きなメソ孔を形成す ることができる CG により酵素電極は向上したが、CG の合成は大変手間がかかり、大量生産に向かないとい う難点がある。そこで、筆者らは東洋炭素から発売さ れている酸化マグネシウム(MgO)を鋳型とする多 孔質炭素(CNovel®、以下 MgO 鋳型炭素)の利用を 検討してきた²³⁾。MgO 鋳型炭素の利点は、工業的ス ケールで生産されていることからもわかるように、安 定した生産性とその低い製造コストである。鋳型の除 去にはフッ酸のような強力な酸を利用することがない のも大きな特徴である。鋳型となる MgO の結晶子サ イズを制御することで細孔サイズが調整でき、また回 収した鋳型は再利用できる。

MgO 鋳型炭素にフルクトースデヒドロゲナーゼや ビリルビンオキシダーゼを修飾し、電気化学的酸素還 元反応を行ったところ、CG と同程度の酸素還元電流 が得られた。また細孔サイズが大きいほど酵素の吸着 量は増え、触媒電流は大きくなった。ただ、細孔サイ ズが大きい場合、酵素の吸着配向性はランダムさを増 すので、4章で紹介した配向性制御表面修飾技術の導 入が効果的である。ビリルビンオキシダーゼにおいて MgO 鋳型炭素に酵素と電極間の電子移動を促進する 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) を炭素表面に吸着させる、あるいは、6アミノ2ナフ トエ酸を共有結合で修飾することで、直接電子移動が 促進された24)。電極表面に多くの酵素を修飾するとい う観点では、150 nmの細孔は大きい。そこで、酵素 の吸着および表面電子移動に適した 40 nm の細孔と 物質拡散に適した150 nmの大きい細孔を併せ持つバ イモーダル炭素を検討した(図6)。大小の鋳型と炭 素の前駆体と混ぜて、炭素化するだけであるので、細 孔の空間的配置の制御などは難しい。そこで、大小の 鋳型の混合比を変えて、検討したところ、ビリルビン オキシダーゼの場合では、メソとマクロの割合が2: 1において最大電流を得ることができ、酵素の仕込み 量は同じであっても得られる電流はメソ孔あるいはマ クロ孔のみの場合の2倍以上であった²⁵⁾。

図6 酵素担持のためのマクロ孔とメソ孔を持つ炭素55

7.メディエータ型電子移動反応:ハイドロゲル修飾 電極

メディエータ型電子移動反応とは、酵素の活性中心 付近まで近づき電子授受を行う低分子酸化還元物質 (これを電子伝達メディエータと呼ぶ)を一方の基質 の代わりとなるように反応系を組んだ系である。この 反応系は酵素の構造(レドックス活性部位の表面から の距離)によらず、ほとんどの酸化還元酵素に適応で きる。この系における出力は、酵素量のみならずメディ エータの修飾方法(濃度)に大きく依存する。カソー ド・アノード間でのメディエータのクロスオーバーを 防ぐために、電極上に酵素とともに固定化するのが一 般的である。メディエータは酵素に応じて、電極反応 速度(過電圧)、安定性、溶解度、安全性を考慮し最 適な分子を選択しなければならない。

酵素とメディエータをともに修飾する代表的な方法 として、Heller らが開発したレドックスハイドロゲル

法がある¹⁾。ポリマーにペンダント状にぶら下がった オスミウム錯体をメディエータとし、酵素も架橋剤を 用いてそのポリマーに共有結合させハイドロゲルフィ ルムを形成し、電極に固定化する。酵素・メディエー タを平板電極上へ高密度に固定化した場合、1~10 mA cm⁻²程度の最大電流密度が期待でき、DET 型触 媒反応の場合の2桁以上の電流値が得られる。この場 合、触媒電流値は酵素・メディエータ修飾層の構造特 性、すなわち修飾膜内の反応物およびイオン輸送速度、 メディエータの拡散速度に大きく影響をうける²⁶⁾。膜 厚が薄い場合、触媒電流は酵素膜に対して比例して増 加し、膜厚が十分に厚くなると膜厚に依存せずに一定 値をとり、電極表面から離れたところに存在する酵素 は触媒として機能しない。またメディエータ分子をポ リマーに固定化することで拡散係数は溶存系に比べ数 桁低下し、電極表面のごく限られたエリアに存在する 酵素しか機能しない。さらに酵素固定化膜が厚くなる と、反応物の拡散も妨げられ、膜厚に反比例して電流 値は減少する。このように、酵素機能電極を設計する 上で酵素固定化量に対して、効率よく、大きな電流値 が得られるためには、最適な膜厚、すなわちメディエー タや反応物の拡散の影響(=濃度分極)が出ないほど 薄く設計する必要がある。ただし膜を薄くすると固定 化した酵素の利用効率は上昇するが、電流値は低い。 したがって、多孔質炭素に酵素・メディエータ層を薄 く修飾(固定化)する方法が有効である。

8. ハイドロゲル修飾に適した炭素電極

先述の KB 電極上にグルコース酸化酵素を含むハイ ドロゲルを修飾した系において、平板電極に対してグ ルコース酸化電流値の増加は1.6倍にとどまった27)。 また化学気相成長(Chemical Vapor Deposition、 CVD) 法によりカーボンペーパーやカーボンファイ バー上から CNT を成長させて、その表面にレドック スポリマーと酵素(グルコースオキシダーゼ)からな るハイドロゲルを修飾した場合²⁸⁾、CNT が炭素繊維 上から伸長するに従い、グルコース酸化触媒電流密度 も上昇し、20 mA cm⁻²という高い電流密度を達成し ている。しかし、電流はそれ以上増加せず、比表面積 あたりの電流密度は減少している。いずれも物質輸送 をスムーズに行うためのマイクロメートルスケールの 構造化が十分に発達していないために、ハイドロゲル を構成する酵素とポリマーの炭素層への浸透が抑制さ れハイドロゲルが偏在する、あるいは反応物の供給が 追い付かず、修飾された酵素すべてが利用できていな い。酵素電極反応が実際に起こる反応層の厚みを考慮 し、薄くそして広くハイドロゲルを修飾するためサブ マイクロメートルスケールの電極表面の多孔質化が重 要となる。

一方、細孔サイズが制御できる MgO 鋳型炭素は、

上記の問題を解決できる。細孔サイズが40nmの MgO 鋳型炭素を用いた場合、ハイドロゲルの担持量 が少ない時(0.1 mg cm⁻²)はKB修飾電極と同程度 であったが、酵素量を増やしたとき(0.5 mg cm⁻²) に、MgO 鋳型炭素電極はKB電極よりグルコース酸 化触媒電流値が大きくなった²⁰⁾。すなわちKBよりも 酵素が吸着できる表面が増加しているが、ハイドロゲ ル担持量には限界があった。

そこで MgO 鋳型炭素を電気泳動電着法により炭素 集電体上に修飾した。炭素微粒子と PVDF をアセト ニトリル中に分散させて、炭素板とグラッシーカーボ ンディスクに 50-200 V の直流電圧を1分間印加し、 MgO 鋳型炭素をグラッシーカーボン基板上に泳動電 着させると、5-10 μm の細孔が表面に多数形成され ていた。多孔質電極上にグルコースデヒドロゲナーゼ と酸化還元ポリマー (Os(2,2'-bipyridyl)₂Cl が結合し た polyvinylimidazole) を修飾した。KB を炭素材料 として用いた場合では、ハイドロゲル修飾量を増やす とサイクリックボルタモグラムは拡散型を示した300が、 MgO 鋳型炭素修飾電極ではハイドロゲル薄膜が形成 されていることがわかった。グルコース存在下で観察 されるグルコース酸化電流はハイドロゲル修飾量に比 例し、1.6 mg cm⁻²のハイドロゲルを担持した際には 25℃ で 100 mA cm⁻²、45℃ で 300 mA cm⁻² という非 常に大きな電流密度が安定して観察された(図7)。 アレニウスプロットより得られた活性化エネルギーが 約40 kJ mol⁻¹であったことから酵素反応が律速であ ることがわかり、グルコースや電解質イオンの移動お よびハイドロゲル修飾に適した炭素構造(マクロ孔と メソ孔)が形成されていることが分かった。また、緩 (4℃)での保存安定性を調べたところ、220 日を経過しても初期電流値とほぼ同等の安定した触媒 電流値が観察されている。

図7 ハイドロゲル修飾多孔質炭素電極による高効率電気化学 的グルコース酸化反応

9. 結論

酵素バイオ燃料電池は、軽量、コンパクト、フレキ シブル、低コスト、環境低負荷、高安全性といった特 徴を有するだけでなく、エネルギー運搬、資源開発、 廃棄、リサイクルに関わる消費エネルギーを減らすこ とができる、省エネルギー・低炭素社会実現に欠かせ ない次世代電源といえる。しかしながら、現状では出 力・寿命・コストに課題があり、実用化には至ってい ない。近年分野横断型研究が盛んになり、本分野はめ ざましく進展しているが、実用に耐えうる性能を発揮 するためには、生物工学的手法を活用した高性能酵素 の開発のみならず、酵素の潜在的にもつ活性を十分に 活かすことのできるナノ反応場の設計とエンジニアリ ングが求められる。さらに物質およびイオン輸送を両 立する構造が同時に求められ、酵素や電気化学分野の みならず炭素材料関係との密接な連携が今後も重要性 を増していくと考えられる。小稿が、新たな電池開発 に多少なりとも寄与するところがあれば最大のよろこ びである。

[参考文献]

- S. Calabrese Barton, J. Gallaway, P. Atanasov, *Chem. Rev.*, **104**, 4867 (2004).
- 2) J. A. Cracknell, K. A. Vincent, F. A. Armstrong, *Chem. Rev.*, 108, 2439 (2008).
- 3) T. Chen, S. Calabrese Barton, G. Binyamin, Z. Gao, Y. Zhang, H-H. Kim, A. Heller, *J. Am. Chem. Soc.*, 123, 8630 (2001).
- 4) A. Zebda, S. Cosnier, J.P. Alcaraz, M. Holzinger, A. Le Goff, C. Gondran, F. Boucher, F. Giroud, K. Gorgy, H. Lamraoui, P. Cinquin, *Sci. Rep.*, 3, 1516 (2013).
- 5) H. B. Gray and J. R. Winkler, *Proc. Natl. Acad. Sci.* USA, **102**, 3534 (2005).
- C. Léger, P. Bertrand, *Chem. Rev.*, 108, 2379 (2008).
- 7) C. F. Blanford, R. S. Heath, F. A. Armstrong, *Chem. Commun.*, 1710 (2007).
- 8) L. dos Santos, V. Climent, C. F. Blanford, F. A. Armstrong, *Phys. Chem. Chem. Phys.*, **12**, 13962 (2010).
- 9) S. Tsujimura, M. Asahi, M. Goda-Tsutsumi, O. Shirai, K. Kano, K. Miyazaki, *Phys. Chem. Chem. Phys.*, **15** 20585 (2013).
- Y. Kamitaka, S. Tsujimura, and K. Kano, *Chem. Lett.*, **37**, 218 (2007).
- M. Holzinger, A. Le Goff, S. Cosnier, *Electrochim.* Acta, 82, 179 (2012).
- 12) P. Asuri, S. S. Karajanagi, H. Yang, T.-J. Yim, R. S. Kane, J. S. Dordick, *Langmuir*, 22, 5833 (2006).
- 13) E. Lojou, X. Luo, M. Brugna, N. Candoni, S. Dementin, M.T. Giudici-Orticoni, J. Biological Inorganic Chem., 13, 1157 (2008).
- 14) T. Miyake, S. Yoshino, T. Yamada, K. Hata, M. Nishizawa, J. Am. Chem. Soc., 133, 5129 (2011).
- 15) R. W. Pekala, J. Mater. Sci., 24, 3221 (1989).

- 16) Y. Hamano, S. Tsujimura, O. Shirai, K. Kano, *Materi. Lett.* **128**, 191 (2014).
- S. Tsujimura, A. Nishina, Y. Hamano, K. Kano, S. Shiraishi, *Electrochem. Commun.*, 12, 446 (2010).
- Y. Hamano, S. Tsujimura, O. Shirai, K. Kano, Bioelectrochem., 88, 114 (2012).
- S. Tsujimura, Y. Kamitaka, K. Kano, *Fuel cells*, 7, 463 (2007).
- S. Tsujimura, E. Suraniti, F. Durand, N. Mano, *Electrochim. Acta*, 117, 263 (2014).
- 21) Y. Kamitaka, S. Tsujimura, N. Setoyama, T. Kajino, and K. Kano, *Phys. Chem. Chem. Phys.*, 9, 1793 (2007).
- R. Kontani, S. Tsujimura, K. Kano, *Bioelectrochemistry*, 76, 10 (2009).
- M. Inagaki, M. Toyoda, Y. Soneda, S. Tsujimura, T. Morishita, *Carbon*, 107, 448 (2016).
- 24) S. Tsujimura, K. Murata, *Electrochim. Acta*, 180, 555 (2015).
- H. Funabashi, S. Takeuchi, S. Tsujimura, *Sci. Rep.*, 7, 45147 (2017).
- 26) W. J. Albery, A. E. G. Cass, Z. X. Shu, *Biosens. Bioelectron.*, 5 367 (1990).
- 27) E. Suraniti, S. Vives, S. Tsujimura, N. Mano, J. Electrochem. Soc., 160, G 79 (2013).
- 28) S. Calabrese Barton, Y. Sun, B. Chandra, S. White, and J. Hone, *Electrochem. Solid-State Lett.*, 10, B 96 (2007).
- 29) K. Murata, W. Akatsuka, S. Tsujimura, *Chem. Lett.*, 43, 928 (2014).
- 30) S. Tsujimura, K. Murata, W. Akatsuka, J. Am. Chem. Soc., 136, 14432 (2014).

辻村 清也 筑波大学数理物質系 准教授 博士(農学)

- 2002年 京都大学大学院農学研究科修士課程修了
- 2003年 京都大学大学院農学研究科博士課程中途退学
- 同 年 京都大学大学院農学研究科 助手
- 2010年 ポールパスカル研究所(仏)客員研究員
- 2011年 筑波大学数理物質系 准教授 現在に至る

核磁気共鳴(NMR)分光法の基礎と 吸着系への応用

Fundamentals of nuclear magnetic resonance spectroscopy and its application to the characterization of adsorption systems

> 大阪大学総合学術博物館 The Museum of Osaka University 上田 貴洋 Takahiro Ueda

1. はじめに

核磁気共鳴(NMR)分光法は、主にラジオ波領域 の電磁波吸収によって核スピンの状態間のエネルギー 遷移を検出する分光法で、分子の構造や運動を調べる ことができる非常に強力な分析法の一つである。

1938年、I. I. Rabi が LiCl の分子線で初めて核磁気 共鳴現象を観測した。1946年には F. Bloch と E. M. Purcell が凝縮系で観測に成功し、測定手法が確立さ れた。その後、磁場の均一性の向上に伴い、NMR ス ペクトルの分解能も飛躍的に向上し、分子構造を調べ る手法として化学分野へ応用が広がった。デジタル技 術の発展に伴い、パルス NMR の手法が開発されると、 スペクトルを複数の周波数軸に展開する多次元 NMR 法や NMR 信号を画像として観測する磁気共鳴断層撮 影(MRI)法など様々な分野への応用が進み、その範 囲は拡大の一途をたどっている。また、その適用範囲 は極めて広く、液体はもちろんのこと、固体や気体の 試料も測定対象となる。

NMR を吸着系へ適用する上で、特筆すべきはラジ オ波の吸着媒に対する透過性とプローブ核に対する選 択性である。吸着媒の多くは固体であり、紫外・可視 領域の電磁波は吸収あるいは散乱されて、固体内の細 孔(隠れた空間)に吸着された分子と十分な相互作用 ができない。一方、NMR で使用するラジオ波は、波 長が長く低エネルギーのため、固体による散乱が小さ く、固体内部に存在する吸着分子(に属するプローブ 核)にまで到達し相互作用できる。したがって、NMR 分光法を用いると、これまで本シリーズの前稿で紹介 された赤外・ラマン分光法¹¹や XAFS²と同様に、細 孔内部に吸着された分子に対して分光学的情報を得る ことができる。また、一定の外部磁場のもとでは電磁 波の共鳴吸収はプローブ核に固有の周波数に対しての み起こる。この点において、前稿で紹介されたX線 /中性子散乱法³³と同様、プローブ核以外の部分(こ れを格子という)によるエネルギーの吸収はほとんど 無視でき、プローブ核とその周辺の局所的な情報だけ を選択的に取り出すことができる(ただし、励起状態 からの緩和過程として、プローブ核から格子へのエネ ルギー散逸は起こる)。このように、気体、液体、固 体を問わず、目的とするプローブ核(とそれが属する 分子)の周辺の局所的な構造情報を収集できる点が NMR分光法の強みである。

今や NMR 分光計は、ほとんどすべての化学系研究 施設に設置され、化学の研究に欠かすことができない 分析法の一つとなっている。その分、NMR に関する 成書^{4,5,6}は数多く執筆されており、読者の目的やレベ ルに合わせて選ぶことができる。一般的な理論や測定 法についてはそれらを参考にしていただくとして、こ こでは NMR を使って吸着状態を描写する上で知って おくべき基礎とその適用に焦点を絞って解説する。

2. 核磁気共鳴(NMR)とは

磁性核は固有の角運動量をもっており、その大きさ は換算プランク定数 \hbar を用いて $\{I(I+1)\}^{1/2}\hbar$ で表 せる。ここで、Iはスピン量子数であり、整数または 半整数の値をもつ。この角運動量は核スピンとして知 られており、スピン量子数Iの磁性核を"核スピンIをもつ原子核"のように表現する。スピン角運動量は、 任意に選んだ軸(一般にz軸をとる)に対して2I+1個 の投影成分 I_z をもつ。つまり、これらの成分は量子 化されており、磁気量子数mを用いて $I_z=m\hbar$ と表 せる (空間量子化)。

磁場が存在しない場合、核スピン I の原子核がもつ 2I + 1 個のエネルギー準位は縮退しているが、強い 外部磁場 B_0 が印加されると縮退は解け、磁場方向を 量子化軸 (z 軸) として 2I + 1 個のエネルギー準位 に分裂する。このとき、各準位のエネルギー E_m は原 子核の磁気モーメントの z 軸成分 μ_z と外部磁場の強 さ B_0 に比例する ($E_m = -\mu_z B_0$)。また、原子核の磁気 モーメント μ は I に比例する ($\mu = \gamma I$)。この比例定 数 γ を磁気回転比といい、核種に固有の定数である(例 えば、¹H に対して $\gamma_H = 2.67522 \times 10^8 \text{s}^{-1} \text{T}^{-1}$ 、²H に対し て $\gamma_D = 4.1065 \times 10^7 \text{s}^{-1} \text{T}^{-1}$)。 $\mu_z = \gamma I_z = \gamma m \hbar$ であるから、 $E_m = -m\hbar\gamma B_0$ が得られる。このようなエネルギー準 位の分裂を核ゼーマン分裂という。

図1 磁場 (B_0) 中の¹H(I = 1/2) と²H(I = 1) のエネルギー 準位

図1に、磁場中における¹H(I=1/2)および²H (I=1)のエネルギー準位を示す。いずれの場合も エネルギー準位は等間隔に分裂し、その大きさは $\hbar\gamma B_0$ である。¹H核($\gamma > 0$)の場合、このエネルギー準位 は、プロトンの核磁気モーメントが磁場に対して同じ 向きをとるか、反対の向きをとるかに対応する。すな わち、磁場と同じ向きをとる核磁気モーメントの状態 (m=+1/2)のほうが、逆向きの状態(m=-1/2) よりも安定(有利)である。

これらのエネルギー準位間に対する電磁波吸収を核 磁気共鳴 (NMR) という。NMR 分光法の選択律は Δm = ±1である。したがって、共鳴条件は $\Delta E = \hbar \gamma B_0$ であり、これを満たす周波数 $\nu_0 = \Delta E/h = \gamma B_0/2\pi e$ 共鳴周波数 (またはラーモア周波数) という。核スピ ンIの裸の原子核が完全に孤立し、外部磁場 B_0 以外 に何の相互作用も受けていない場合、2I 個の許容遷 移はすべて等しい周波数に観測される。原子核の周り に電子が存在したり、他の原子核と磁気的な相互作用 をしたりする場合には、それらの相互作用によって生 じる局所磁場が外部磁場の摂動として付加される。そ の結果、エネルギー準位はシフトし、共鳴周波数が変 化する。したがって、共鳴周波数の変化を調べること により、原子核が受ける局所磁場、つまり原子核に作 用する種々の相互作用を評価することができる。

3. スピンに働く相互作用

3.1 化学シフト

外部磁場は、原子核の周りに存在する電子の軌道角 運動量を誘起し、原子核の位置に小さな局所磁場 B_{ind} を生じさせる。この局所磁場の大きさは外部磁場に比 例し、外部磁場を遮蔽したり増強したりすることで共 鳴周波数に変化を生じる(図2)。これを化学シフト という。原子核が感じる全磁場 B_{eff} を $(1-\sigma)B_0$ と表 すと、ラーモア周波数は、 $\nu_0 = (1 - \sigma)\gamma B_0/2\pi$ となる。 ここで、 σ を遮蔽定数といい、原子核の周りの電子分 布や電子の軌道角運動量に依存する。 σ は、同じ元素 であっても原子核の置かれている電子環境によって変 わるため、共鳴周波数を詳細に吟味することで、原子 核近傍の電子構造を議論できる。

図2 原子核の位置に誘起される局所磁場とそれがエネルギー 準位に及ぼす遮蔽効果(¹Hの場合)

このままでは ν_0 は外部磁場に依存するため、異なる外部磁場のもとで観測された値を直接比較することが困難である。そこで、外部磁場に依存しない化学シフト目盛としてる目盛を導入すると便利である。これは、ある標準物質の共鳴周波数 ν_R (遮蔽定数は σ_R)との差を用いて、 $\delta = 10^6 (\nu_0 - \nu_R) / \nu_R$ のように表す。 $\sigma \ll 1$ なので、 $\delta \ge \sigma$ の関係は $\delta \approx 10^6 (\sigma_R - \sigma)$ と書ける。これから、遮蔽 σ が小さくなるにつれて、 δ は増加することがわかる。 δ 目盛は化学の分野で広く用いられている。

遮蔽効果には、局所磁場を外部磁場と逆向きに生じ させる反磁性の寄与 σ_a ($\sigma_a > 0$) と同じ向きに生じさ せる常磁性の寄与 σ_{n} ($\sigma_{n} < 0$)があり、化学シフトは これらの寄与の和として観測される。σaは^IHの化学 シフトの主たる寄与となる。その大きさは原子核を取 り巻く電子密度に依存し、観測核の近傍にある原子や 原子団の電気陰性度と相関する。一方、励起状態とし てp軌道やd軌道が使えるようになると、外部磁場 によって電子が強制的に循環され、局所磁場を生じる。 これが σ_n の起源である。 σ_n は、1) 1/ ΔE (ΔE は基 底状態と励起状態のエネルギー差)、2)結合に関与 している p あるいは d 軌道の電子密度、3) $\langle 1/r^3 \rangle$ (rは関与する軌道と原子核との距離)に依存する。 原子番号が大きい原子では、ΔE が小さくなるため、 σ_{0} は大きくなる。¹H以外の原子核に対して $|\sigma_{0}|$ > | σ_{d} | であり、常磁性の寄与が遮蔽効果を支配する。 この他にも、隣接基や溶媒が作る局所磁場によって遮 蔽効果を生じる。吸着系では、化学シフトを通して吸 着分子のコンホメーション"はもちろんのこと、吸着

質 - 吸着媒相互作用や吸着サイトに関する知見も得る ことができる。

一例として、A型ゼオライトに吸着されたXeの ¹²⁹Xe-NMR スペクトルを紹介する。¹²⁹Xe の化学シフ トは Xe の密度に強く依存し、細孔物質に吸着された Xeは、その密度によって 50<δ<250 の範囲で変化す る⁸。図3は、Na型(下図)とその一部をCsで置換 した(上図) A型ゼオライトに吸着された Xe の¹²⁹Xe-NMRスペクトルである。細孔径が約0.4 nmのNa 型に Xe(ファンデルワールス直径:0.44 nm)を吸 着させるには高圧(5MPa)条件が必要である。さ らに、吸着した Xe の細孔間での動的交換が非常に遅 いため、それぞれの細孔に存在する Xe の分子数に応 じた化学シフトにピークが観測される⁹。この化学シ フトの違いは、細孔内での Xe の密度の違いを反映し ている。Na型の一部をCsで置換すると(図上)、細 孔径が約0.5 nm に拡大し、Xe は細孔間を容易に行 き来できるようになる。その結果、吸着されたすべて の Xe は平均として一様な環境を感じることになり、 Na型で観測されたピークの重心の位置にピークが1 本だけ観測される。このように、化学シフトから吸着 質の状態や相互作用に関する情報を得ることができる。

図3 A型ゼオライトに吸着されたキセノンの¹²⁹Xe-NMR スペ クトル;Na型(下図)、Cs部分置換体(上図)

また、分子を構成している原子は、化学結合の様式 によって異なる電子分布をもつ。この場合、遮蔽定数 はテンソルで与えられ、注目している原子核が関与す る化学結合の外部磁場に対する配向によって化学シフ トが異なる。試料が流体の場合、分子の素早い等方回 転によって化学シフトテンソルは完全に平均化され、 その主値(σ_{11} , σ_{22} , σ_{33})の平均値 $\sigma_{150} = (\sigma_{11} + \sigma_{22} + \sigma_{33})/3$ だけが観測される。ところが、固体の粉末試料では、 分子運動の凍結や(軸性回転のような)空間的に制限 された運動によって、化学シフトテンソルの異方性 (CSA: Chemical Shift Anisotropy)が生き残り、粉 末パターン(後述)と呼ばれる特徴的なスペクトル線 形を示すようになる。窮屈な空間に吸着された分子に 属する原子核(例えば¹³C や¹²⁹Xe)では、そのスペク トルに化学シフトテンソルの異方性による粉末パター ンが観測される場合があり¹⁰、得られた CSA から吸 着サイトの対称性について議論できる。

3.2 磁気双極子相互作用

同種核あるいは異種核スピン間には、磁気的な双極 子相互作用が働く。ある磁気モーメント μ をもつス ピンは、距離rだけ離れた別のスピンの位置に局所磁 場を作る(図4)。その大きさ $B_{\rm D}$ は、 $B_{\rm D}$ =($\mu_0/4\pi$) (μ/r^3)(3 cos² θ -1)である。ここで、 θ はスピン間 ベクトルが外部磁場となす角度である(μ_0 は真空の 透磁率)。

図4 磁気モーメントµのスピンが距離rの位置に作る局所磁場

外部磁場にこの双極子場が加わる(あるいは減じら れる)ことによって、スピンのエネルギー準位にシフ トが生じる。これは共鳴線の分裂や線幅の広がりとし て観測される。代表的な双極子場の大きさは 10⁻³T く らいであり、これは 10⁴Hz 程度の分裂あるいは線幅に 相当する(観測する外部磁場の大きさによらない)。⁴H の場合、このシフトは $\nu_{\pm} = \pm (3/4) D_{\text{HH}}(3\cos^2\theta - 1)$ となる。ここで、 D_{HH} を双極子カップリング定数とい い、 $D_{\text{HH}}/\text{Hz} = (\mu_0/4\pi)(\gamma_{\pm}^2\hbar/2\pi r^3)$ である。固体の 粉末試料では、このシフトが Pake(ペイク)パター ン(後述)と呼ばれる特徴的な形状のスペクトルを与 える。Pake パターンのピーク間の周波数差は(3/2) D_{HH} となり、これから二つのスピン間の双極子相互作 用の大きさ、つまりスピン間距離を求めることができ る。

3.3 核四極子相互作用

核スピンが1/2より大きな核は電気四極子核と呼 ばれ、核四極子モーメントQをもつ。これは核の周 りの電場勾配と相互作用し(図5)、ゼーマン分裂し たエネルギー準位にシフトをもたらす。そのため、こ の相互作用も共鳴線の分裂や線幅の広がりの原因とな る。この相互作用の大きさは四極子結合定数(e²aQ/h) で表される。たいていの場合、これは数 MHz 程度に なるが、²H(*I* = 1) では 200 kHz 程度と小さく、固 体の粉末試料でも共鳴線を観測することが可能であ る。²Hの共鳴線のシフトは、外部磁場と電場勾配テ ンソルの主軸とのなす角θに依存する。電場勾配が軸 対称のときは $\nu_{\pm} = \pm (3/8) (e^2 q Q/h) (3 \cos^2 \theta - 1)$ で与えられ、外部磁場に対して磁気双極子相互作用と 同じ角度依存性をもつ。分子が異方的な運動をすると、 核四極子相互作用が部分的に平均化を受ける。その効 果はスペクトルの粉末パターンに顕著に表れるため、 固体の²Hスペクトルは分子運動や分子配向の研究に 広く使われている⁵。さらに、半整数スピンをもつ電 気四極子核では、中心遷移(1/2↔-1/2)に核四 極子相互作用の2次摂動によるシフトを生じる。詳細 は成書⁵⁾を参考にされたい。

図5 核四極子モーメントと核の周りの電場勾配との相互作 用:(a)静電的なエネルギーの安定化をうける核四極子モーメン トの配向、(b)静電的な反発によってエネルギーが不安定になる 核四極子モーメントの配向

4. 線形と線幅

NMR スペクトルの線幅は、その特徴によって、"均 ーな線幅"(Homogeneous line broadening)と"不均 ーな線幅"(Inhomogeneous line broadening)に分類 される(図6)。均一な線幅は、観測周波数の範囲す べてにわたって一つの固有の吸収線として現れる。こ れは、共鳴するすべての核スピンのエネルギー準位が、 この幅で分布していることに他ならない。多数のスピ ンが互いに磁気双極子相互作用した結果生じる線幅や T_2 緩和がもたらす線幅がこれに由来する。一方、不 均一な線幅は、周波数の異なるいくつもの狭い吸収線 の重ね合わせによって生じる。粉末試料において、化 学シフトの異方性、2スピン系の磁気双極子相互作用、 あるいは核四極子相互作用によって生じる粉末パター ンがこれに属する。

図6 NMR スペクトルの線幅:(a)均一な線幅、(b)不均一な線幅

4.1 吸収線の2次モーメント

一般に、結晶格子中に固定された多数の核スピン系 では、分子運動が凍結すると、そのエネルギー準位は 互いの磁気双極子相互作用によって幅広く分布する。 その結果、均一な線幅をもつガウス関数型の吸収線が 観測される。例えば、¹Hの場合、この線幅は 60~80 kHz にも及ぶことがある。また、線形も理想的なガ ウス関数から歪むなど、線幅に対して物理的意味を与 えることが難しい場合もたびたび遭遇する。このよう な場合には、つぎの吸収線 $f(\nu)$ の2次モーメント M_2 を用いて線幅を評価するとよい。

$$M_{2} = \frac{\int_{-\infty}^{\infty} (\nu - \nu_{0})^{2} f(\nu) d\nu}{\int_{-\infty}^{\infty} f(\nu) d\nu}$$
(1)

分子運動が励起され、その速さが線幅の逆数程度に 達すると、スピン間の磁気双極子相互作用は平均化を 受け、吸収線の先鋭化をもたらす。運動が異方的な場 合、磁気双極子相互作用は部分的に平均化され、残っ た相互作用が線幅を生じさせる。したがって、固定格 子での吸収線と部分的に先鋭化された吸収線のそれぞ れの2次モーメントとの差(2次モーメントの減少 分)を吟味することで、磁気双極子相互作用の平均化 に寄与する分子運動の様式を議論できる¹¹⁾。この方法 は、分子運動が凍結している固定格子の線幅が既知の 場合に有効である。

運動が等方的で十分に速い場合は、磁気双極子相互 作用は完全に平均化され、非常に鋭い吸収線を与える。 このとき、線形はローレンツ関数型となる。吸収線の 半値全幅($\Delta\nu_{1/2}$)は、スピン-スピン緩和時間 T_2 と $\Delta\nu_{1/2} = 1/\pi T_2$ のような関係がある。後述するように、 分子の運動が共鳴周波数に比べて十分に速い場合

 $(\omega_{0}\tau_{c} \ll 1)$ 、 $1/T_{2} \propto \tau_{c}$ となる。ここで、 τ_{c} は分子運動の相関時間である。したがって、線幅 $\Delta \nu_{1/2}$ は分子運動の寿命によって決まり、 τ_{c} に比例する。分子運動が熱的な活性化過程で起こる場合には、 τ_{c} の温度依存

性はアレニウスの式 $\tau_e = \tau_0 \exp(E_a/RT)$ で与えられる。 つまり、温度の逆数に対してローレンツ関数型吸収線 の線幅を対数プロットすると、その傾きから線幅を支 配している分子運動の活性化エネルギーを見積もるこ とができる¹²⁾。

4.2 吸収線の粉末パターン

化学シフト、磁気双極子相互作用(2スピン系)お よび核四極子相互作用はいずれも、ゼーマン分裂した エネルギー準位にシフトを生じさせる。その結果、吸 収線が現れる周波数が変化する。その大きさは、それ ぞれの相互作用テンソルの主軸と外部磁場との相対的 な配向によって決まる。結晶格子に固定された分子に 属する核スピンに注目すると、外部磁場に対して相互 作用テンソルの主軸がとる配向は、外部磁場に対して相互 作用テンソルの主軸がとる配向は、外部磁場に対する 結晶格子の向きに依存する。ここで、多くの微結晶か らなる多結晶粉末試料を考える。ある結晶子は、外部 磁場に対して一定の配向をもっており、それに対応し た周波数に吸収線を与える。外部磁場に対する結晶子 の向きはそれぞれ異なるので、すべての結晶子が与え る吸収線を、空間平均(集団平均)して重ね合わせた ものが粉末パターンとして観測される。

例として、2スピン系の磁気双極子相互作用を考え よう。相互作用のところでも説明したように、互いの スピンが作る局所磁場によって2本の吸収線は $\nu = \nu_0$ ±(3/4) $D_{\rm HH}$ (3 cos² θ -1)に観測され、その位置 は外部磁場に対するスピン間ベクトルの配向 θ によっ て変わる。粉末試料では、 θ を全空間にわたって平均 をとる。すると、それぞれの吸収線に対して図7に示 すように、高周波数側あるいは低周波数側に裾を引い たような特徴的な線形が得られる。観測される線形は これらの重ね合わせとなる。この特徴的な線形は Pake パターンと呼ばれる。核四極子相互作用や化学シフト の異方性による吸収線のシフトは、磁気双極子相互作

図7 代表的な粉末パターン: (a)2 スピン系の双極子相互作用 による Pake パターン、(b)Pake パターンを構成する各成分、(c) 化学シフトの異方性(CSA)による粉末パターン

用と同じ($3\cos^2\theta - 1$)の角度依存性をもつため、 基本的に類似の粉末パターンを与える。ただし、化学 シフトの異方性の場合には、二つの吸収成分のうちー 方だけが観測される。その線形は化学シフトテンソル の非対称性に依存する。ここで、 η は化学シフトテン ソルの非対称性を表すパラメーター($0 \le \eta \le 1$)で ある。軸対称テンソル($\sigma_{11} = \sigma_{22} \neq \sigma_{33}$)の場合は $\eta = 0$ である。

図8 ACFのスリット状ナノ空間に吸着された¹³CO₂の広幅¹³C-NMR スペクトルとその運動モード

吸着分子が細孔中で異方的な運動をすると、吸着分 子中のプローブ核に作用するこれらの相互作用は、運 動の様式によって部分的に(あるいは完全に)平均化 を受け、その影響が粉末スペクトルに現れる。例えば、 ACFのスリット状ナノ空間に吸着された¹³CO₂の広 幅¹³C-NMR スペクトルには、非常にシャープな吸収 線の他に、軸対称の CSA による粉末パターンも観測 された(図8)。これは、ACF細孔内に等方的な回転 運動をする CO2 の他に、異方的な運動している CO2 が存在することを示唆している。観測された CSA の 大きさは、バルク CO2の固定格子に対する値の 60% 程度であった。CSA の受ける平均化の程度を吟味し た結果、CO2 は傾斜角が約 30°の歳差運動をしている ことが明らかとなった¹³⁾。このように、分子運動の様 式を仮定し、運動の速度をパラメータとしてシミュ レーションを行い、実測スペクトルと比較することで、 吸着分子の運動に関する情報を得ることができる14)。

4.3 マジック角試料回転(Magic Angle Sample Spinning; MAS)法

化学シフトの異方性、2スピン系の磁気双極子相互 作用および核四極子相互作用の1次摂動などは、すべ て外部磁場に対する配向依存性として2次の Legendre 倍多項式の項 $P_2 = (3\cos^2\theta - 1)/2$ をもつ。 これが、不均一幅の原因である。したがって、相互作 用の空間配向依存性を消すには、 $(3\cos^2\theta - 1) = 0$ を満たす角度、すなわち外部磁場に対してθ=54.73° (これを"マジック角"という)だけ傾けた軸の周り に試料を高速回転させる。すると、相互作用の外部磁 場依存性の時間平均がゼロとなり(時間変調という意 味では分子運動と同じ効果)、見かけ上、相互作用は 消失し、不均一な線幅が取り除かれた吸収線が観測さ れる(図9)。実際には、完全に取り除かれない成分 がサイドバンドとして現れることが多いが、試料の回 転速度を変えて測定することで、等方性ピーク(化学 シフトの等方値をもったピーク)を同定することがで きる。これは、固体高分解能 NMR 法で最もよく使わ れる吸収線の先鋭化の手法である。吸着系では、ミク ロ孔内に吸着された分子のコンホメーション解析や吸 着サイトの同定などに用いることができるい。

図 9 化学シフトの異方性による粉末パターンとその MAS ス ペクトル (δ_{iso} に対応するピークの両側に現れた一連のピークが サイドバンド)

4.4 研究例 1

先にも述べた通り、多結晶試料を扱う固体 NMRで は、スピン間に働く相互作用がもたらす吸収線のシフ ト分布により、スペクトルは特徴的な粉末パターンを 示す。一方、液体試料では、分子の激しい等方的熱運 動によりスピン間に働く相互作用が平均化されるため、 一般には粉末パターンが消失し、等方的でシャープな 吸収線のみが観測される。つまり、分子運動の立場に 立脚すると、NMR スペクトルの粉末パターンの有無 によって、目的の分子集団が固体状態なのか液体状態 なのかを議論することができる。我々は、多孔性配位 高分子の一種である IRMOF-1 ($[Zn_4O(BDC)_3]_n$; BDC = $O_2CC_6H_4CO_2$) に吸着されたシクロヘキサンが 固 - 液相転移をすることを初めて見出した¹⁶⁰。また、 他にも様々な分子で同様の相転移現象を示すことを報 告した^{17).18)}。例として、IRMOF-1に吸着されたn -デ カ ン の 重 水 素 化 物 (n-C₁₀D₁₂)の 広 幅²H -NMRスペクトルの温度変化を図10に示す。IRMOF-1 に吸着されたn -デカンは175K付近に吸熱ピークを 伴う1次相転移を示す。この転移点より低温側では、 分子運動が凍結した CD₂基と一軸回転をしている CD₃基のそれぞれの核四極子相互作用に由来する粉末 パターンが観測されたことから、分子は細孔中で固体 状態として存在していることがわかる。一方、転移点 より高温側では、液体のn -デカンに匹敵する極めて シャープな共鳴線が観測された。これから、この温度 領域でn -デカンは液体として吸着していることがわ かる。このように、固体 NMR に特徴的な粉末パター ンの温度変化を追跡することによって、細孔内に吸着 した分子集団の物理的な状態を調べることができる。

図 10 多孔性配位高分子 IRMOF-1 に吸着された *n*-C₁₀D₁₂の 広幅²H-NMR スペクトルの温度変化

5. 核磁気緩和現象

5.1 スピンー格子緩和とスピンースピン緩和

核磁気緩和とは、励起状態にあるスピン系が平衡状 態へ向かう過程である。磁気緩和には、スピン系とそ れ以外の外界(格子という)との間でエネルギー交換 を行なう"スピン-格子緩和(縦緩和)"と、スピン 間の秩序が失われてエントロピーが増大する"スピン - スピン緩和(横緩和)"の二つの過程がある。それ ぞれの過程は時定数 T_1 と T_2 によって特徴付けられ る。

スピン-格子間のエネルギーのやり取りやスピン系 でのエントロピー増大は、スピンの周りに生じる局所 磁場が揺らぐ(時間変動する)ことで引き起こされる。 この局所磁場は、主に磁気双極子相互作用や核四極子 相互作用によって生じ、試料中の分子運動(回転や拡 散)によって揺らぐ。局所磁場の揺らぎの頻度が核磁 気緩和の効率(緩和速度)を決める。局所磁場の揺ら ぎは、時刻tでの局所磁場h(t)と時刻 $t+\tau$ での局所 磁場 $h(t+\tau)$ の積を、スピン集団全体にわたって平 均をとった量 $\langle h(t)h(t+\tau) \rangle$ で表せる。これを自己 相関関数 $G(\tau)$ といい、時刻tでの局所磁場h(t)が 時刻 $t+\tau$ で $h(t+\tau)$ となる確率を与える。分子運動 のような無秩序な揺らぎの場合には、その時間分布は 指数関数的であり、 $G(\tau) = G_0 \exp(-\tau/\tau_c)$ で近似でき る。ここで、 τ_c は揺らぎの頻度を特徴付ける時定数で、 相関時間と呼ばれる。図 11(a)に示すように、 τ_c が短 いと $G(\tau)$ は速く減衰し、相関は直ちに失われる。一 方、 τ_c が長いと $G(\tau)$ の減衰は遅く、長時間にわたっ て相関が保持される。

緩和速度 $(1/T_1, 1/T_2)$ は局所磁場の揺らぎの 頻度、つまり周波数分布に比例する。この周波数分布 をスペクトル密度 $J(\omega)$ といい、つぎのように $G(\tau)$ のフーリエ変換で与えられる。

$$J(\omega) = G_0 \frac{\tau_c}{1+\omega^2 \tau_c^2} \tag{2}$$

図 11(b)に示すように $J(\omega)$ は周波数 τ_c^{-1} において急激 に減衰する。ここで、ラーモア周波数を角周波数 (ω) = $2\pi\nu_0$) で表したときのスペクトル密度 $J(\omega_0)$ に注 目すると、 τ_{c}^{-1} によってその大きさは変わり、 $\omega_{0} \ge \tau_{c}^{-1}$ が同程度 ($\omega_0 \tau_c \approx 1$) のとき $J(\omega_0)$ は最大となる。つ まり、局所磁場の揺らぎの周波数(分子運動の周波数 に対応)とラーモア周波数が同程度のとき、最も効率 よく核磁気緩和が起こる。緩和速度(ここでは1/T₁ を扱う)はスペクトル密度に比例するので、ωπ≈1 のとき T₁に極小が現れる。また、ω₀を変えると極小 が現れる位置が変化し、ωが小さくなるにつれて極 小をとる τ_c は長くなる (図 12)。ω₀τ_c≪1の領域を極 度尖鋭化 (extreme narrowing) の領域といい、T₁と Taは同じ値をとる。この領域では、観測されるスペ クトルがローレンツ型の吸収線となり、その線幅 Δν は $1/\pi T_2$ に等しくなる。一方、 $\omega_0 \tau_c \gg 1$ の領域では T_2 は τ_e とともに短くなり、 τ_e^{-1} が局所磁場と同程度(例

えば、双極子場の場合、 $\tau_c^{-1} \sim 10^4 s^{-1}$)になると一定値 をとる。この領域は分子運動が凍結しているとみなせ る領域である。

図 12 いくつかの共鳴周波数における T₁および T₂の相関時 間による変化の様子

一般に、磁気双極子相互作用が緩和過程を支配する 最も重要な相互作用となる場合が多い。特に、'Hを プローブとして用いた場合には、その大きな磁気回転 比(y)によってスピン系と格子との結合定数が大き くなり、核磁気緩和も速くなる。時間変動する局所磁 場が、一対の同種核スピンに働く磁気双極子相互作用 によって生じる場合、緩和速度はつぎのBPP (Bloembergen-Purcell-Pound)の式で与えられる。

$$\frac{1}{T_1} = R_1 = C \left[\frac{\tau_c}{1 + \omega_0^2 \tau_c^2} + \frac{4\tau_c}{1 + 4\omega_0^2 \tau_c^2} \right]$$
(3a)

$$\frac{1}{T_2} = R_2 = \frac{C}{2} \left[3\tau_c + \frac{5\tau_c}{1 + \omega_0^2 \tau_c^2} + \frac{2\tau_c}{1 + 4\omega_0^2 \tau_c^2} \right] \quad (3 \text{ b})$$

これは、一対の同種核スピンが一定のスピン間距離を 保持しながら運動している場合のもので、メチル基の 回転や CH₂ 基のフリップ運動の解析に用いることが できる。ここで C は双極子結合定数で、緩和に寄与 する双極子相互作用の大きさを表している。観測され る緩和時間(ここでは T_i)は、観測周波数や結合定 数の大きさにもよるが、一般に $0.1s \le T_i \le 100 s$ 程度 である。この他、分子が並進運動(拡散)をする場合 も磁気双極子相互作用が揺らぎ、核磁気緩和を引き起 こす。拡散の寄与の詳細な取り扱いについては成書¹⁹⁾ を参照いただきたい。ここで、局所磁場の揺らぎが分 子の熱運動によって引き起こされるならば、相関時間 の温度依存性はアレニウスの式 $\tau_c = \tau_0 \exp(E_a/RT)$ に 従うと考えてよい。すると、 $\omega \sigma c \gg 1$ や $\omega \sigma c \ll 1$ の領 域において、ln T₁は温度の逆数に対して直線的に変 化し、その傾きから活性化エネルギー E_aが得られる。 したがって、これらを吸着系へ応用することによって、 細孔内に物理吸着した分子の回転運動や拡散の速さや 活性化エネルギーを求めることができる。

核スピン I が1/2より大きな電気四極子核では、 核四極子相互作用が緩和過程を支配する。電気四極子 核と相互作用する電場勾配テンソルの主値の方向が、 外部磁場に対して時間変動することで核磁気緩和を引 き起こす。例えば、分子に結合した²H—X の場合、電 場勾配の主軸は結合軸方向と一致する。今、分子が回 転運動を起こすと、²H—X 軸は外部磁場に対して時間 とともにその向きを変えることになる。分子運動の相 関時間が極度尖鋭化の領域(ωαc<<1)にある場合、 核四極子相互作用による緩和速度はつぎのようになる。

$$\begin{aligned} &\frac{1}{T_1} = R_{1Q} \\ &= \frac{3}{40} \frac{2I+3}{I^2 (2I-1)} \left(1 + \frac{\eta^2}{3}\right) \left(2\pi \frac{\mathrm{e}^2 q Q}{h}\right)^2 \tau_c \end{aligned} \tag{4}$$

核四極相互作用による緩和は e^2qQ/h の大きさによっ て決まる。これは、一般に数百キロヘルツから数百メ ガヘルツにまで及ぶことがあるが、NMR で観測でき るのはせいぜい数十メガヘルツまでで、 $10^{-7}s \le T_{1} \le 10^2 s$ の範囲に観測されることが多い。極端に短い緩和 時間は吸収線の線幅を広げるとともに、熱平衡状態へ の非常に速い回復をもたらすため、しばしば NMR 信 号が観測できなくなる原因となる。²H 核 (I = 1) で は四極子結合定数 (e^2qQ/h) は 150 kHz~200 kHz 程 度であり、重水素置換された分子の回転運動の速さや その活性化エネルギーを求めるうえで非常に有用であ る。

5.2 研究例 2

スピン-格子緩和時間(T_i)を用いた吸着系の研 究例として、スリット幅が1.1 nmの活性炭素繊維 (ACF)に吸着されたアダマンタンとクロロホルム の重水素化物の分子運動を調べた結果を紹介する^{20).21)}。

アダマンタン分子は直径が 0.76 nm の球状分子で あり、その結晶は室温において柔粘性結晶相 (T_{u} = 208 K)を形成する。一方、クロロホルム分子(CHCl₃) は正四面体の一つの軸を押しつぶしたような四面体構 造をもち、その分子の回転直径は 0.54 nm である。 ACF に飽和吸着されたこれらの分子は、室温におい て線幅が 1 kHz 以下の非常にシャープな²H-NMR スペ クトルを与えたことから、ナノ細孔内で非常に速い等 方回転を行っていることがわかっている。ここで、²H スピン-格子緩和時間(*T*_i)を測定することによっ て、分子運動についてより定量的な議論が可能となる。

図 13 活性炭素繊維(ACF)に吸着されたアダマンタン(○) とクロロホルム(●)のそれぞれの重水素化物の²Hスピン-格 子緩和時間(T₁)の温度依存性

アダマンタン – d_{16} の²H 核の T_1 は特徴的な V字の温 度依存性を示し、135K付近に極小が観測された(図 13)。BPP の式を用いて解析した結果、T₁の極小値か ら得られた四極子結合定数は43kHzであり、バルク での値(173 kHz)のおよそ1/4であった。これは、 観測温度領域より低温において、すでに軸性回転のよ うな異方的な運動が励起されていることを示唆してい る。つまり、135Kに観測された T₁極小は、すでに 低温で励起されている異方的な運動が等方的な運動に 移行する際に励起される最も遅い回転モードに対応し ていると考えられる。このように、スペクトルでは等 方的な運動を行っているように見えるアダマンタン分 子も、T₁で見ると実は異方的な回転運動を行ってお り、それぞれの回転軸周りの運動は異なる相関時間で 特徴付けられるのである。ACF のナノスリット中の E_a は8.8 k Imol⁻¹であり、バルクの柔粘性結晶相(α 相)の値 (13.4 kJmol⁻¹)のおよそ2/3程度であっ た。これから、ACF 細孔内ではバルクに比べて分子 の回転障壁が低く、運動が励起され易いといえる。

一方、クロロホルム $-d_1$ (CDCl₃)の T_1 は、温度の 低下に伴って単調に減少する極度尖鋭化の領域(ω_{ote} 《1)にあることが分かった(図13)。 T_1 の温度依 存性から活性化エネルギーとして $E_a = 5.5$ kJmol⁻¹を 得た。また、式(4)と CDCl₃に対して報告されている 四極子結合定数($e^2qQ/h = 168$ kHz)を用いて T_1 を 解析したところ、室温での回転相関時間として $\tau_e = 4.9$ ×10⁻¹¹sを得た。これをバルク液体の値($\tau_e = 1.7 \times 10^{-12}$ s)と比較すると、 τ_e (ACF)/ τ_e (bulk) = 29 となり、ACF ナノ細孔内では分子の等方回転がバルク液体に比べて 約 30 倍遅いことがわかる。これは、ナノ細孔場による擬高圧効果と考えられる。回転相関時間の圧力依存 性はつぎの式によって表される²²⁾。

$$\frac{\tau_c(p)}{\tau_c(0.1 \text{ MPa})} = \exp\left[\frac{(p-0.1)\Delta V_c}{RT}\right]$$
(5)

細孔内でもバルク液体と同じ活性化体積 (ΔV_r =8.2 ×10⁻⁶m³mol⁻¹)をもつと仮定すると、相関時間の比から ACF ナノ細孔内の CDCl₃分子が受ける擬高圧はおよそ 1 GPa と見積もられる。

ACF に吸着されたアダマンタン分子と CDCl₃ 分子 の回転運動の振舞いは、ACF が作る擬 2 次元的なナ ノ細孔場の違いによって説明できる。ナノ細孔場が作 るポテンシャルの形状は、スリット幅(H)と分子直 径(σ)との相対的な大きさに依存する。概ね H/σが 2より小さい場合は、細孔の中心付近に一つの極小を もつ単一極小ポテンシャルとなり、H/σが2より大 きい場合は、それぞれの細孔壁面近くに極小をもつ二 極小ポテンシャルとなる(図 14)。アダマンタンは前 者に、CDCl₃ は後者に相当する。

単一極小ポテンシャルに束縛されたアダマンタン分 子は、細孔の中心部分を占有し、細孔壁との相互作用 が最も小さい擬単分子層を形成すると考えられる。つ まり、相互作用する近接分子数が減少することによっ て、細孔内での分子回転の*E*。がバルクに比べ小さく なったと理解できる。一方、二極小ポテンシャルに束 縛された CDCl³ 分子は、ACF の細孔壁付近に吸着し、 細孔内で2分子層を形成すると考えられる。CDCl³ 分 子が細孔壁と近接分子から受ける相互作用によって互 いに強く束縛された結果、分子運動が抑制されたと理 解できる。

図14 ACFスリット状細孔の擬2次元的なナノ細孔場が作る ポテンシャル形状;(a)単一極小ポテンシャル、(b)二極小ポテン シャル

このように、NMR を吸着系に適用することで、活 性化エネルギーや相関時間といった吸着分子の運動に 関する情報が得られる。これらを通じて、細孔内での 吸着状態を議論することができる。

6. まとめ

吸着状態を調べる分光学的な手法の一つとして、本 稿では NMR 分光法の基礎とその応用例について紹介 した。

近年、NMR分光計は、超高磁場化によって1GHz 以上の共鳴周波数を有する装置が実現されようとして おり、主に生体高分子の構造解析に向けて、超高感度・ 高分解能化が進んでいる。いずれ吸着系への応用も進 むかもしれない。

一方で、本稿で紹介した手法は、今や"古典的"と 言われるかもしれないが、固体物理や物性化学の分野 ではオーソドックスな研究手法の一つとして広く利用 されている。吸着系のように、気体、液体、固体とい う分子の運動性が異なる状態を同時に扱う場合には、 その吸着状態を調べることのできる極めて有効な分析 手法の一つとなり得る。紙面の関係で紹介できなかっ たが、パルス磁場勾 配 NMR (Pulse-field-gradient NMR)法²³は、吸着分子の拡散係数を調べることの できる非常に強力な分析法の一つとして、すでに多く の吸着系で応用されている。また、吸着分子の運動性 を利用してメソ孔の細孔径分布を調べる NMR クライ オポロメトリー (NMR Cryoporometry)²⁴⁾は、NMR を使って細孔内の融解成分を定量する。さらに、メソ 孔内での吸着分子の運動性をスピン-スピン緩和時間 (T₂)の分布として観測し、そこから細孔径分布を 導く NMR 緩和時間測定法 (NMR Relaxometry)²⁵⁾と いった手法も開発されている。今後、益々、吸着系で の NMR の活用が広がるであろう。

本稿が、これから吸着系の研究において NMR を 使ってみたいと考えておられる読者諸兄姉の理解の一 助になれば幸いである。

[参考文献]

- 1)加藤雅裕, Adsorption News, 120, 16 (2017).
- 2) 大久保貴広, Adsorption News, 122, 15 (2017).
- 3) 飯山 拓, Adsorption News, 121, 11 (2017).
- 4) 初学者向け入門書: P. J. Hore, "Nuclear Magnetic Resonance 2nd Ed.", Oxford University Press, Oxford (2015); P. J. Hore 著,岩下 孝,大井 高, 楠見武徳 訳, "NMR 入門 必須ツール 基礎の 基礎", 化学同人 (2017).
- 5) 中級者向け参考書:齋藤 肇,安藤 勲,内藤 晶 著, "NMR分光学-基礎と応用-",東京化

学同人 (2008).

- 上級者向け参考書: R. R. Ernst, G. Bodenhausen, A. Wokaun, "Principles of Nuclear Magnetic Resonance in One and Two Dimensions", Clarendon Press, Oxford (1987); R. R. Ernst, G. Bodenhausen, A. Wokaun 著, 永山国昭,藤原敏 道, 内藤 晶, 赤坂一之 共訳, "2次元NMR 原理と測定法", 吉岡書店 (1991).
- 7) T. Ueda, N. Nagaoka, T. Eguchi, N. Nakamura, *Micropor. Mesopor. Mater.*, 117, 185 (2009).
- 8) M. A. Springuel-Huet, J. L. Bonardet, A. Gedeon, J. Fraissard, *Magn. Reson. Chem.*, 37, S 1 (1999).
- 9) C. J. Jameson, A. C. de Dios, J. Chem. Phys., 97, 417 (1992).
- T. Ueda, T. Eguchi, N. Nakamura, R. E. Wasylishen, J. Phys. Chem. B, 107, 180 (2003).
- T. Ueda, M. Nakai, T. Yamatani, Adsorption, 23, 887 (2017).
- H. Omichi, T. Ueda, T. Eguchi, *Adsorption*, **21**, 273 (2015).
- H. Omi, T. Ueda, K. Miyakubo, T. Eguchi, *Applied Surface Science*, 252, 660 (2005).
- M. J. Duer, "Introduction to Solid-State NMR Spectroscopy", Chapter 6, Blackwell Publishing, Oxford (2004).
- T. Ueda, K. Kurokawa, T. Eguchi, C. Kachi-Terajima, S. Takamizawa, *J. Phys. Chem. C*, **111** (3), 1524 (2007)..
- T. Ueda, K. Kurokawa, H. Omichi, K. Miyakubo, T. Eguchi, *Chem. Phys. Lett.*, 443, 293 (2007).
- T. Ueda, K. Kurokawa, Y. Kawamura, K. Miyakubo, T. Eguchi, *J. Phys. Chem. C*, **116**, 1012 (2012).
- 18) T. Ushimi, K. Miyakubo, T. Eguchi, T. Ueda, *Chem. Lett.*, 43, 423 (2014).
- A. Abragam, "Principles of Nuclear Magnetism", Chapter 8, Oxford University Press, Oxford (1961).
- H. Omichi, T. Ueda, Y. Chen, K. Miyakubo, T. Eguchi, *Mol. Cryst. Liquid Cryst.*, 490, 91 (2008).
- T. Ueda, H. Omichi, Y. Chen, H. Kobayashi, O. Kubota, K. Miyakubo, T. Eguchi, *Phys. Chem. Chem. Phys.*, **12**, 9222 (2010).
- A. Wakai and M. Nakahara, J. Chem. Phys., 103, 2025 (1995).

- 23) J. Kärger, D. M. Ruthven, D. N. Theodorou, "Diffusion in Nanoporous Materials, Vol.1", Chapter 11 (pp. 347-394), Wiley-VCH Verlag GmBH & Co. KGaA, Weinheim, Germany (2012).
- 24) J. Mitchell, J. Beau W. Webber, J. H. Strange, *Phys. Rep.*, **461**,1 (2008); O. V. Petrov, I. Furó, *Prog. Nucl. Magn. Reson. Spectrosc.*, **54**, 97 (2009).
- 25) F. Jaeger, S. Bowe, H. Van As, G. E. Schaumann, *Eur. J. Soil Sci.*, **60**, 1052 (2009); J. V. Bayer, F. Jaeger, G. E. Schaumann, *The Open Magnetic Resonance Journal*, 3, 15 (2010).

静岡市民文化会館を会場として、平成29年11月 16日(木)から17日(金)の2日間の日程で、第31回日本 吸着学会研究発表会を開催した。平成3年の第5回研 究発表会が、浜松勤労会館(実行委員長 静岡大学工 学部 金子 正治先生)にて開催されて以来、静岡県で は2回目の開催となった。事前申し込み期限など数々 の変更や手違いがあり、ご迷惑をおかけしましたが、 66件の一般講演への申込みに加え、3件の招待講演 があり、2日間の参加者数は190名であった。数々の 至らなかった点に、この場を借りてお詫び申し上げる とともに、多くの方々のご理解により盛況に終えるこ とができたことに深く感謝申し上げます。

口頭発表会場の様子

研究発表会は、2件の学術賞と1件の奨励賞(カル ゴンカーボン ジャパン賞)の招待講演、32件の口 頭発表、34件のポスター発表が行われた。1日目は、 午前中に7件の口頭発表と本年度の学術賞の岡山大学 黒田泰重先生より、「ゼオライトを利用した新奇電子 状態の創出と小分子の吸着・活性化」と題した招待講 演が、午後はポスター発表に続いて8件の口頭発表が プログラムされた。招待講演と口頭発表は、大会議室 で行われた。

今回、ポスター会場は、ゆったりしたスペースを確 保することを念頭に置いて会場選定を行った。ポス ターの横幅 90 cm に対して、120 cm/人のスペース が取れ、口頭発表会場に隣接した A 展示室をポスター

静岡理工科大学理工学部物質生命科学科山山崎誠志

φ

Æ

黒田先生の学術賞受賞講演

会場とした。そのため、会場内では、活発な討論が行われた様子であった。今回も従来のとおり投票によっ てポスター賞5件を選出した。選考の結果、ポスター 番号順に「パラフィンの物理吸着による SBA 15 の吸 着特性制御」出口 実さん(信大院理)、「メロンの長 期輸送・貯蔵への調湿材の適用」執行 達弘さん(北 海道立総合研究機構)、「高分解能 TEM 画像マッチン グを用いた多孔性炭素構造解析手法の開発」清水 亮 さん(京大院工)、「構造柔軟性を有するナノポーラス 錯体の in-situ 吸着熱測定」鈴木貴也さん(名大院工)、 「CHA 型ピュアシリカゼオライトを用いたプロピレ ン/プロパン吸着分離」井谷 真さん(奈良先端大) が受賞した。受賞ポスターの詳細は、受賞者からの寄 稿をご覧ください。

学会賞受賞者(左から、迫田先生、黒田先生、加納会長、田中先生)

企業展示は、マイクロトラック・ベル株式会社、カ ンタクローム・インスツルメンツ・ジャパン合同会社 に行っていただいた。また、上記2社に加えて、株式 会社クレハと富士化学株式会社より、要旨集への広告 掲載によるご支援を賜り、厚く御礼申し上げます。

1日目午後の全てのセッションが終了後、日本吸着 学会総会、奨励賞(カルゴン カーボン ジャパン賞)、 学術賞授賞式が行われた。続いて、繁華街の中心に位 置する中島屋グランドホテルに場所を移し、懇親会を 開催した。参加者には、懇親会場まで徒歩15分の移 動と、ご不便をおかけしましたが、当日は寒くなかっ たことと、ほぼ定刻から懇親会を始められたのは幸い です。懇親会は、会長の加納先生のご挨拶と乾杯で始 まった。一昨年の徳島大学と昨年の長崎大学で開催さ れた研究発表会懇親会では、それぞれ"阿波踊り"と

"龍踊"が用意され、懇親会が大いに盛り上がった。 今年の出し物は何か?とハードルを上げられた気持ち になりましたが、静岡にはこれと言って披露するもの がない。そこで、11月5日に秋漁が解禁になった旬 の走りになる"桜エビ"とB級グルメで有名(?) な"静岡おでん"を目玉として、静岡の味覚で満足し ていただくことにした。特に"桜エビ"は、揚げたて のかき揚げを食していただけるようにしたところ、長 蛇の列ができるほどの人気にホッと胸をなでおろす気 持ちでした。懇親会の途中に、ポスター賞の授賞式が 行われ、受賞者から一言喜びの声を頂戴した。さらに 終盤には、次回の研究発表会の実行委員長である大阪 大学 上田貴洋先生から大阪大学 豊中キャンパスで開 催するとの案内を頂きました。これに続いて、北海道 大学 向井 紳先生から 2018年9月3日~6日の日程 で北海道大学で開催される PBAST-8への参加のご 案内がありました。最後に、前会長の京都大学 宮原 稔先生から、ありがたいお言葉で閉会となった。

2日目は、午前中に東京大学・放送大学 追田章義 先生より、「環境問題の解決をめざした吸着プロセス および吸着剤の開発研究」と題した学術賞受賞講演に 続いて7件の口頭発表があった。午後は、関西大学 田中俊輔先生の「ゼオライト類似錯体の構造・形態制 御と吸着特性に関する研究」と題した奨励賞(カルゴ ン カーボン ジャパン賞)受賞講演と10件の口頭 発表があった。

今回の研究発表会も例年と同様に、カーボン系、ゼ オライト、MOF等の材料系に関する発表、基礎的な 吸着関連の発表、そして応用技術に至る幅広い分野の 発表があり、活発な討論が行われた。また、今回の特 徴としては、企業による発表が例年より多かった。ま た、企業の方から、新製品などを開発しても、公表す る場がないというご意見を頂戴した。実現するかは別 として、個人的な意見であるが、通常の発表時間より 短めの15分程度で、企業による製品紹介や技術紹介 ができるような企業セッションがあると、学会として の幅も広がり、企業と研究機関との結びつきもできや すくなり、日本吸着学会も発展していくことになると 感じた。

最後に、本研究発表会の準備・運営するにあたり、 前々回の実行委員長の加藤雅裕先生(徳島大学)、前 回の実行委員長の森口 勇先生(長崎大学)、運営委員 長の児玉昭雄先生(金沢大学)、学会事務局の遠藤 明 先生をはじめとして、多くの方々にご支援いただいた。 また、静岡理工科大学研究室メンバーと小土橋陽平先 生ならびに研究室の学生には、会場設営から撤去まで ご協力頂いた。多大なご協力に深く感謝申し上げます。

活発な討論が行われたポスター会場の様子

懇親会場で表彰されたポスター賞受賞者の方々

CHA 型ピュアシリカゼオライトを用いたプロピレン/プロパン吸着分離 (ポスター番号: P-26)

奈良先端大¹ · RITE²

井谷 真1 · 来田 康司1 · 余語 克則1.2

この度はポスター賞を頂き、大変光栄に存じます。 多くの方々に発表ポスターをご覧頂くとともに、有意 義なご指導、貴重な意見を賜わりましたことを心より 感謝申し上げます。以下に本研究の概要を紹介させて 頂きます。

蒸留法によるプロピレン/プロパン分離精製は多く のエネルギーが必要であり、代替技術として吸着法が 提案されています。吸着法の課題である処理量を増加 させるためには、高性能なC3吸着・分離剤の開発が 必要となります。当研究室では、高いプロピレン/プ ロパン吸着分離特性を持つCHA型ピュアシリカゼオ ライト成形体(以下、Si-CHAビーズ)の作製に成功 しました¹⁾。このような球状シリカゲルを出発源とし たゼオライトの生成過程は十分に解明されておらず、 より高性能な吸着剤を開発するためには生成過程の理 解が必要となります。そのため本発表では、Si-CHA ビーズの生成メカニズムを検討するとともに、プロピ レン吸着特性を評価し報告致しました。

Si-CHA ビーズを粉末化し、XRD パターンを測定し たところ、CHA 型ゼオライト特有の回折ピークが観 察されました。Si-CHA ビーズは出発原料である球状 シリカゲルの形状を保っており、カラム充填において 十分な強度も有していました。

Figure 1. 101.3 kPa、298 K でのC3H6 吸着特性

市販のゼオライト成形体(LTAペレットおよび FAUペレット)、Si-CHA 粉末、カオリンをバインダー として成形した Si-CHAペレットについて、298 K、 101.3 kPa におけるプロピレン吸着量を比較しました

(Figure 1)。Si-CHA ペレットは、バインダーの使用量に応じたC3H6吸着量の減少が観察されました。
 一方、Si-CHA ビーズは成形体であるにも関わらず、
 Si-CHA 粉末と同等のC3H6吸着量を示しました。

以上のように、Si-CHA ビーズはプロピレン吸着剤 として利用可能であることを示しました。

[参考文献]

1) 井谷ら, *化学工学会第49回秋季大会*, PA 127 (2017).

メロンの長期輸送・貯蔵への調湿材の適用

(ポスター番号: P-06)

北海道立総合研究機構

執行 達弘・森 武士・野村 隆文

この度、我々の研究発表に対してポスター賞を頂け たことは身に余る光栄です。今後の研究の励みになり ます。また、多くの方々に発表ポスターをご覧いただ き、貴重なご意見を賜りましたことを心より感謝申し 上げます。以下に本研究の概要を紹介させていただき ます。 メロンの市場拡大を目指し、船便による海外への長 時間輸送や、お歳暮・クリスマス商材向けの長期貯蔵 後出荷を可能とする鮮度保持技術の開発が求められて います。我々は現場で調査、予備実験を行う中で、メ ロンを MA (Modified Atmosphere)包装で覆うこと で酸素濃度などを調整し、休眠させる技術に着目しま した¹⁾。しかしメロンは水の蒸散が多いことから、MA 包装のみでは MA 包装内での結露と、それに伴うカ ビの発生が見られました(Fig. 1 (a))。これに対し、 地場で産出される天然の調湿材(稚内層珪質頁岩)を メロンの鮮度保持に適用した場合、結露と、腐敗・カ ビは発生しませんでしたが、メロン表面が萎れ、商材 としての価値が損なわれていました。(Fig. 1 (b))。 そこで、MA 包装を用いたメロンの鮮度保持において 適湿である、より高湿度域すなわち相対湿度 85~95% に制御する調湿材の開発を試み、実証試験を行いまし た。

硫酸を触媒、水を溶媒として、水ガラスをゲル化さ

Fig. 1 3℃ で 30 日間貯蔵後のメロンの外観

せ、得られた湿潤ゲルを120~220℃で3h水熱処理 した後、50℃で24h乾燥することでシリカゲル(高 湿度用調湿材)を作製しました。水熱処理温度が高い ほど、ピーク細孔径が大きく、水蒸気吸着等温線が立 ち上がる相対圧も大きな試料を得ることができました。 実証試験においても、MA包装内の相対湿度を90% 前後に調湿することができ、メロンに腐敗・カビも表 面の萎れも見られませんでした(Fig. 2)。

[参考文献]

 1)執行ら 平成28年度日本セラミックス協会東北 北海道支部研究発表会 (2016) 1 P 36

Fig. 2 3℃ で 21 日間貯蔵後のメロンの外観

パラフィンの物理吸着による SBA 15 の吸着特性制御

(ポスター番号:P-03)

信州大学大学院総合理工学研究科理学専攻', 信州大学大学院理工学系研究科物質基礎科学専攻², 信州大学環境エネルギー材料科学研究所³, 信州大学理学部⁴

出口 実¹・浅倉 啓介²・内田 太郎³・尾関 寿美男⁴・飯山 拓^{3,4}

このたびはポスター賞を頂き、大変光栄に存じます。 多くの方々に発表ポスターをご覧いただくとともに、 有意義なご指摘、貴重な意見を賜りましたこと、心よ り御礼申し上げます。以下に本研究の概要を紹介させ ていただきます。

吸着現象は分子分離や分子貯蔵に利用されており、 その高効率化には吸着媒の細孔径や表面の化学的性質 の制御が重要です。本研究では、均一なシリンダー状 細孔をもつ SBA 15 に不揮発性物質であるドコサンを 物理吸着させ、SBA 15-docosane ハイブリッド体を 合成し、その吸着特性の評価を行いました。

最初に、SBA 15 を合成¹¹しドコサンと SBA 15 を混 合し 60℃, 48 h の加熱処理によってハイブリッド体 を合成しました。

水吸着等温線測定の結果から SBA 15-docosane ハ

イブリッド体は SBA 15 よりも疎水性が向上している ことが分かりました。疎水性分子のドコサンが SBA 15 表面のシラノール基を覆ったことで、SBA 15 の疎 水性が向上したと考えられます。ヘキサン吸着等温線 測定から、ハイブリッド体へのヘキサン吸着の立ち上 がりが SBA 15 と比較して、より低相対圧へとシフト することを確認しました。この低相対圧シフトは、バ ルクの溶媒で観測される不揮発性物質の溶解による蒸 気圧降下が原因だと考えています。吸着したヘキサン は細孔内で不揮発性のドコサンを溶解すると予想され、 その結果ヘキサンの蒸気圧が低下したためだと考えて います。

さらに、ハイブリッド体の構造の温度依存性を温度 可変セルを用いた X 線回折により得ました。その結 果、32℃を境に構造に変化があることが分かりまし た。TG-DTA の結果と比較したところ、細孔内のド コサンは 32℃ 付近で相転移を生じることが分かり、 ドコサンの相転移が SBA 15-docosane ハイブリッド 体の細孔構造に影響を与えていることが示唆されまし た。この温度による構造変化が吸着特性に影響を与え ると考え、エタノール吸着等温線測定により確かめま した。すると 32℃ で得られた吸着等温線のヒステリ シスが閉じ、吸着挙動に大きな変化があることが分か りました (Fig. 1)。これらの結果から不揮発性物質 の物理吸着による修飾には、興味深い点が多く、さら なる研究が必要だと考えています。

最後になりましたが、本研究を進めるにあたりご指 導いただきました皆様に深く御礼申し上げます。 [参考文献]

 Takeo Yamada, Haoshen Zhou, Keisuke Asai, Itaru Honma, *Materials Letters*, 2002, 56, 93-96

Fig. 1 SBA 15-docosane ハイブリッド体のエタノール吸着等温線

高分解能 TEM 画像マッチングを用いた多孔性炭素構造解析手法の開発 (ポスター番号: P-11)

京都大学大学院工学研究科化学工学専攻 **清水 亮・田中 秀樹・宮原 稔**

この度はポスター賞をいただき、大変光栄に存じま す。多くの方々に発表ポスターをご覧頂くとともに、 有意義なご意見を賜り、心より御礼申し上げます。以 下に本研究の概要を紹介させて頂きます。

近年、多孔性炭素の構造解析法として、二体相関関数g(r)と系のポテンシャルエネルギーを指標とする Hybrid reverse Monte Carlo (HRMC)法が開発され、注目を集めています。しかし、多孔性炭素ではその不均一性ゆえに、マクロ量のサンプルからの平均情報であるg(r)から正確なミクロ構造を知ることは困難です。一方、高分解能 TEM (HR-TEM)を用いると局所的なミクロ構造を観察することができますが、実際の原子構造についての描像を得ることは困難です。そこで本研究では、HR-TEM 像に対する残差因子とポテンシャルエネルギーを評価関数とする TEM-HRMC 法を開発しました。

本研究において開発した TEM-HRMC 法は Phase 1~Phase 3の3段階からなります。Phase 1では HRMC 法を、また、Phase 2では分子動力学(MD) 法と HRMC 法を交互に繰り返す MD-HRMC 法を採 用しました。ここで、Phase 1 および 2 では、HR-TEM 像のシミュレーションは行わず、計算コスト削減のた め、炭素単原子の HR-TEM 像の重ね合わせからなる 疑似 TEM 像を用いました。そして、Phase 3 では、 HR-TEM 像のシミュレーションを行い、残差因子の 計算に使用しました。

開発した TEM-HRMC 法の検証のため、quench MD 法により二つの多孔性炭素モデル(Target 1, 2) を構築し、それぞれの HR-TEM 像を計算しました (Fig. 1-al, bl)。そして、それらの HR-TEM 像を 用いた MD-HRMC 法を実施することにより、Target 1,2に対する推定構造1,2を得ました(Fig. 1a2, b2)。推定構造の HR-TEM 像は各 Target の像に 良好に一致し、ポテンシャルエネルギーの誤差は2% 未満となりました。しかし、細孔径分布については、 Target 1と推定構造1は良好に一致している一方で、 Target 2と推定構造2では、比較的大きな差異が見 られました。この原因としては、試料高さ方向の情報

(a1):Target 1, (a2):推定構造 1, (b1):Target 2, (b2):推定構造 2
 Fig. 1 多孔性炭素モデルに対する推定構造および HR-TEM 像

の不足が考えられるため、今後は、HR-TEM 像観察 における through focus 法などを導入し、その構造解 析精度をさらに向上させることを予定しています。 最後になりましたが、本研究を進めるにあたり御指 導を賜りました、宮原稔教授、田中秀樹准教授に厚く 御礼を申し上げます。

構造柔軟性を有するナノポーラス錯体の in situ 吸着熱測定

(ポスター番号:P-18)

名古屋大学大学院工学研究科

鈴木 貴也・金島 奎太・堀 彰宏・馬 運声・松田 亮太郎

この度はポスター賞を頂き、大変光栄に存じます。 多くの方々に研究発表のポスターをご覧頂くとともに、 有意義なご指摘、貴重な意見を賜りましたこと、心よ り御礼申し上げます。以下に本研究の概要を紹介させ ていただきます。

多孔体へのガス・蒸気吸脱着は、発熱・吸熱を伴う 現象として知られています。現在、この熱移動を有効 に利用したヒートポンプ等が一般的に利用されていま す。しかし、その一方で吸着による発熱は周囲の温度 を上昇させ、吸着量の観点から不利に働くという問題 点を含んでいます。金属イオンと有機配位子から構築 されるナノポーラス金属錯体(MOF)は、構造的な 自由度が高く、剛直な構造体から柔軟な構造体まで合 成できることが知られています。柔軟に構造を変化さ せて吸着するような、動的特性をもつ MOF は、吸着 に伴う発熱を構造変化による吸熱により相殺すること で吸着能低下を防ぐことができるのではないかと期待 されています¹⁾。そこで、本研究では MOF のガス吸 着過程における熱収支を明らかにするために、ガス吸 着下での比熱測定装置の開発を行い、本装置を用いて、 剛直および柔軟な構造を有する MOF のガス吸着にお ける熱現象を直接観測することを試みました。

ガス雰囲気下 in situ 比熱測定装置を用いて、ガス 吸着の際に構造変化がない剛直な MOF (HKUST-1)と構造柔軟性を有する柔軟な MOF (ELM-12) のガス吸着時熱測定を行いました。93 K において真 空状態から窒素を101.3 kPa まで導入した結果、 HKUST-1では Fig. 1 のように吸着熱の発熱現象を 示す上に凸のピークのみが観測されました。一方、 ELM-12では Fig. 2 のように、2 つの上に凸のピー クが観測されました。これは吸着熱の上に凸のピーク と構造変化の吸熱現象による下に凸のピークが同時に 検出されたためと考えられ、構造変化の吸熱が吸着熱 の一部を相殺しているものと示唆されます。今後は吸 着熱と構造変化による熱移動現象をより詳細に解析し、 定量的に評価したいと考えています。

最後になりましたが、本研究を進めるにあたりご指 導を賜りました、松田亮太郎教授、馬運声准教授、堀 彰宏助教に厚く御礼申し上げます。

[参考文献]

 S. Hiraide, H. Tanaka, N. Ishikawa, M. Miyahara, ACS Appl. Mater, Interfaces, 9 (2017) 41066.

第27回吸着シンポジウム(吸着夏の学校)報告

第27回吸着シンポジウムは2017年8月31日(本)~ 9月1日(金の日程で千葉県千葉市のホテルメイプルイン幕張で開催された。本シンポジウムは吸着分野で活躍する若手研究者の研究活動の活性化と相互の交流を目的として、1泊2日の合宿形式で開催した(写真1)。 今回のシンポジウムは、液相吸着の専門研究者および次世代研究を担う新進気鋭の研究者による特別講演と若手研究者によるショートプレゼンテーションで構成された。43名の参加者のうち、17名の学生参加であり、20、30代の研究者が10名であり、40代以上が16名と学生と若手研究者、中堅、シニアへとキャリアパスと縦のつながりのできるような会であったと自負している。

本シンポジウムでは液相吸着の研究で活躍されてい る6名、次世代研究として吸着に関係した幅広い比較 的若手の研究者6名、異分野交流として吸着に比較的 近い炭素材料の研究者2名を講師としてお呼びし、今 の吸着関係の研究内容を広く抑えた研究成果を紹介い ただいた。また、若手有志の3件の一般講演を行った。 以下の講演タイトルと講師リストを列記する。

講演タイトルと講師リスト

液相吸着講演

「レアメタル回収に向けた吸着剤の開発」
 (産総研)尾形 剛志
 「ポリオールによる金属イオンの対流輸送型吸着」
 (佐賀大)川喜田英孝

「吸着剤の表面状態によって変化する水質汚染物質の 除去特性」

(千葉大)町田 基
 「機能性高分子を用いた液相吸着剤の開発」
 (佐賀大)森貞真太郎

一般講演

「新規吸着速度測定法の開発と速度論的アプローチに よるガス吸着機構の解明」

(豊橋技科大)伊藤 博光

千葉大学大学院理学研究院大場友則

「グラフェン表面への吸着を利用した H₂/CO₂ 高選択 分離」

(千葉大学)清水 研吾 「セラミックのナノサイズ化による二酸化炭素吸着の 可能性探索」

(千葉大学) 渡邊 拓海

次世代吸着研究講演(異分野)

「インターカレーション化合物の NMR 解析」
 (岡山大)後藤 和馬
 「含窒素炭素材料の構造解析と触媒反応」
 (千葉大)山田 泰弘

次世代吸着研究講演(吸着分野)

「π空間へのアニオン吸着メカニズム」
 (岡山大)大久保貴広
 「XRD, HRMC による細孔内イオン液体の構造解析」
 (信州大)飯山 拓
 「充放電特性に与える炭素電極細孔構造の影響」
 (長崎大)瓜田 幸幾
 「マイクロリアクタの迅速混合を活用した多孔性錯体
 微粒子の合成と複合化」
 (京都大)渡邉 哲
 「MOF の細孔空間を利用した無機材料合成」
 (東京農工大)近藤 篤
 「ソフト金属有機構造体の CO2 吸着における自己熱補
 償メカニズム」

(京都大)田中 秀樹

講演は特にいわゆる若手~中堅の吸着関係の研究者 による多くの招待講演と異分野交流を考えた炭素材料 学会の研究者による招待講演と若手活性化と異分野綱 領を意識したプログラムとなっており、講演中の質問 を OK とし、わからないまま、講演がずっと進んでい くというようなことが無いようにした。そのため、和 やかな雰囲気で活発な質疑がなされた。

会場は幕張本郷駅から徒歩3分のホテルで、アクセ スは抜群に良い環境であった。今回は今までと異なる 試みを多く入れており、このアクセスの良さもその一 つである。従来は閉鎖的な環境でシンポジウムに集中 できるようという配慮であったが、今回は利便性を とった。幸い1日目、2日目ともに席が埋まっており、 遊びには行かない、真面目な参加者ばかり!でした(写 真2)。夕食は立食形式で行った。写真3は懇親会中 の写真を頼んでいたのが、懇親会後になってしまった が、予定時間を大幅に過ぎて盛り上がった。ホテルの 方には時間を過ぎても受け入れていただき感謝します。

今回、始めて吸着シンポジウムに参加したので、雰 囲気等がわからず、お引き受けするのをだいぶ渋って いましたが、取りまとめをやってみるといろいろな方 からの助けもあり、楽しくやらせていただきました。 今までの伝統は保てなかったかもしれませんが、ある 程度自由にやらせてもらいました。執り行うにあたり、 運営委員長の児玉先生には色々なリクエストをして頭 を悩まされたと思います。できる限りのリクエストに 応えていただきありがとうございます。また、前回執 り行った近藤先生や森貞先生、瓜田先生、その他招待 講演で招待した先生方に相談させてもらいつつ進めて きました。様々なアドバイスをいただきありがとうご ざいます。

学会の将来のための若手活性化が叫ばれている昨今 であるが、研究活動が楽しくなければ活性化しようが ないと思っています。研究自体はなかなか結果が出な くて大変ではありますが、シニアの研究者が楽しそう に研究活動をし、それをみて、中堅、若手が楽しそう に研究活動をする。それをみた学生がなんか楽しそう だなと思って、楽しく研究活動をするとともに自分の キャリアを考えていく。そういうポジティブな連鎖が 若手だけでなく全体の活性化につながっていくと思い ます。本シンポジウムがそのようなポジティブな研究 の連鎖につながる一助になれば幸いです。

写真2 講演風景

写真1 集合写真

写真3 懇親会後、の風景

吸着シンポジウムに参加して

千葉大学大学院理学研究科 清水研吾

私は、今回大場先生がこのシンポジウムを主催され るということで、手伝いをさせてもらうとともに発表 にも参加させていただきました。

自身の発表や先生方の発表の雰囲気を通じて、この シンポジウムについて感じたことは「とにかくアット ホーム」であることに尽きます。先生同士が旧知の仲 であられることや、発表中の質問のおかげで、このよ うなアットホームで楽しいシンポジウムになったので はないかと思います。研究の議論がとても白熱したた め、時間がやや押してしまうほどでしたが、その分多 くの気づきが得られるディスカッションが行われたの ではないかと思います。今まで私が参加してきた学会 とは雰囲気がかなり異なっていたため、顔なじみの方 が多い学会というものは、こんなに楽しい雰囲気にな るものだと驚きました。

懇親会では、他の大学の学生たちと話す時間がたく さんあり、とても楽しい時間を過ごすことができまし た。普段の研究室生活では、どうしても外部の人との 関わりが少なくなってしまいますが、この機会のおか げで研究に対するモチベーションが上がり、周りの同 年代の学生たちに負けないようにと、身の引き締まる 思いになりました。ただ、懇親会中に写真を撮るはず だったのですが、話すのに夢中になってしまい、写真 3は懇親会後の写真となってしまい大変失礼いたしま した。

吸着シンポジウムを振り返って

千葉大学大学院理学研究科

渡邊拓実

私は今回の吸着シンポジウムは、大場先生のサポー トとして初めて参加させていただきました。今回の開 催地は幕張にあるホテル、メイプルイン幕張。いつも の吸着夏の学校とは少し違った、比較的都市部の開催 であったこともあって、新鮮な気持ちで迎えられた方 も多いのではないかと思います。朝、会場準備のため 少し早めに会場に到着すると、メイプルイン幕張の職 員の方が町内の清掃活動に向かわれている所でした。 ホテル内だけでなく、周りもきれいにしていこうとい う姿勢に感動したことを覚えております。当日は自身 の発表も控えていたこともあって、緊張していました が、このような場所で発表・運営できたことは嬉しく 思います。

講演の話をさせていただくと、非常に有意義であっ たという言葉につきます。初めの基調講演から、アッ トホームな空気で、気軽に質疑が飛び交い、時には笑 いも起きながら講演が進んでいきました。これを見た 我々学生は、「楽しそうだな」とか、「自分もこのディ スカッションに参加したいな」と思われたのではない でしょうか。普段研究活動というもの自体が大変だと か忙しいだとか重苦しいイメージを少なからず持って いた私にとっては、意外ではあったもののポジティブ な印象を受けました。

発表内容自体は、吸着というキーワードを中心に行 われるので、自分のテーマと重なる部分もありつつ異 なる部分を勉強することができました。私のテーマで はカーボン材料を扱うことが多かったので、MOFを テーマにした研究発表など、興味深く聞かせていただ きました、ゲート現象(通称マウスオープニング現象) はもちろん何度か聞いたことはありましたが、局所的 な構造変化に関しては知識がありませんでしたので、 自分の吸着に対する知識と感覚を持って考える時間を 得られました。

懇親会では今まで他大学の学生・先生方とお話しさ せていただく機会というのがほとんどありませんでし たので、普段とはまた違った刺激を受けることができ ました。

最終的には、細かいミスはあったかもしれませんが、 ほぼ予定通りにスケジュールを終了できたのは参加者の 皆さまのおかげです。この場を借りて感謝申し上げます。

8th Pacific Basin Conference on Adsorption Science and Technology (PBAST-8)

告

F

Pacific Basin Conference on Adsorption Science and Technology (PBAST) は吸着分野に携わる研究者や技術者 等が自由に議論や意見交換ができるプラットフォームを提供すべく 1997 年より3年毎に環太平洋地域で開催され ております。第8回目となる今回は札幌での開催となり、木更津で開催された第1回目の会議以来21年ぶりの日 本での開催となります。口頭発表セッション、ポスター発表セッションに加え、北海道の地元料理や地酒を楽しみ ながら各国の参加者との交流を深めることができる懇親会、Excursion 等のイベントも予定しております。奮って のご参加をよろしくお願いします。

日時:2018年9/3(月)~9/6(木)

Ч

Welcome Reception 9 / 3(月)
 □頭発表・ポスター発表 9 / 4(火)~9 / 6(木)午前
 懇親会 9 / 5(木)
 Excursion 9 / 6(木)午後(余市蒸留所見学、小樽散策後サッポロビール園で夕食)
 会場:北海道大学フロンティア応用科学棟(2014年研究発表会開催会場)
 共催:日本吸着学会

숲

参加費:一般 Early Bird 60,000 円、Regular 70,000 円、On-site 75,000 円 (Welcome Reception、Banquet、Excursion 込み) 学生 Early Bird 30,000 円、Regular 35,000 円、On-site 40,000 円 (Welcome Reception、Banquet 込み) Accompanying Person 20,000 円 (Welcome Reception、Banquet、Excursion 込み) Excursion 10,000 円 (学生用)

発表申込: 2 / 28 締切 締切を延長しました(採否連絡 3 月末)

※下記 HP より指定フォーマット(A4・1枚)にて提出をお願いします。

参加申込:参加登録締切(Early Bird) 6/30、参加登録締切7/31

HP: http://www.knt.co.jp/ec/2018/pbast8/

問い合わせ先:向井神 (PBAST-8 Chair) pbast8@gmail.com

日本吸着学会国際交流スカラーシップ (吸着関連国際学会の参加登録料の援助)について

日本吸着学会は、吸着関連分野を研究する学生諸君が、最先端の研究成果について学びながら海外の研究者と直 接交流できる国際会議に積極的に出席することを奨励し、将来国際的に活躍する広い視野を持った研究者に成長し てもらうことを願って、国際会議に出席し自らの研究成果を発表する学生会員諸君に、審査の上、国際交流スカラー シップとして参加登録費を援助します。

これまで支援を行ってきた FOA (International Conference Fundamental of Adsorption)、PBAST (Pacific Basin Conference on Adsorption Science and Technology) に加え、吸着関連の国際学会、および国際学会の吸着関連セ

クションを対象とします。

今回、2018年度上半期(4月~9月)開催の学会への参加登録料の援助の募集を下記の要領で行いますので、 奮ってご応募下さい。

募集要項

応募資格:国際会議に出席して自ら吸着関連分野の研究発表を行う日本吸着学会学生会員(会員受付は随時行っています)。ただし、本会以外の団体(学会、法人等、学会のTravel Grants を含む)から援助が見込まれる者あるいはすでに決定している者は除く。

対象学会:2018年度上半期(4月~9月)に開催される国際学会。

(2018年度下半期分の募集は9月を締切として行う予定です。)

援助の条件:援助を受けられる場合は、以下の事柄を了解していただきます。

- 1. 本会会員にふさわしい、しっかりとした研究発表を行うこと。
- 2. 世界各国から集まる優れた研究者の最新の研究について学び、彼等と積極的に交流して、学術・文化に関す るより深い知見を得るように努めること。
- 3. 会議終了後、速やかに参加報告書を提出すること(本会機関紙 "Adsorption News"に掲載予定です)。
- 発表において日本吸着学会(Japan Society on Adsorption)への謝辞を付すこと。
 援助額:参加登録費(学生)相当額 但し5万円を上限とする(総額25万円/半期程度を予定) なお、指導教員毎の申込数、発表内容、学会の開催場所、これまでの吸着学会研究発表会での発表状況等により審査を行い、補助対象学生数を制限する場合があります。

応募方法:下記事項をもれなく記入の上、日本吸着学会事務局に e-mail で送付して下さい。

- 1. 申請者氏名、2. 会員番号、3. 所属・学年、4. 連絡先(住所、所属(研究室名まで記入))、TEL、FAX、 e-mail アドレス、5. 指導教員氏名、6. これまでの日本吸着学会研究発表会における発表履歴、7. 参加す る国際学会名とホームページアドレス
- 8. 発表タイトル

応募先および問い合わせ先:

日本吸着学会事務局 e-mail: info@j-ad.org 応募締切: 2018 年 3 月 30 日金 必着

日本吸着学会大学院生研究奨励賞について

日本吸着学会は、将来の日本の吸着関連分野を支える人材育成のため、吸着関連の研究で博士号取得を目指す学 生会員の研究中間成果と今後の研究計画に対して審査を行い、優秀と認めたものに対して研究奨励賞を授与して研 究を支援します。

募集要項

応募資格:将来の日本の吸着科学の発展に貢献する意思を持った、吸着関連のテーマにより国内外の大学において 博士課程の研究を行う大学院生。

奨励金額:15万円

審査方法:研究概要、これまでの吸着学会研究発表会での発表状況、当学会による支援の必要性等により審査を行い、最大3名程度の方に授与を行います。

受賞の条件:支援を受けられる場合は、以下の事柄を了解していただきます。

- 1. 採択テーマ、および氏名は"Adsorption News"およびホームページに掲載します。
- 2. 学位取得時に、本会機関紙 "Adsorption News" に研究概要をご寄稿いただきます。

3. 学位取得前に研究を終了したり、テーマを変更する場合には、奨励金の返還をしていただく場合があります。

4. 採択された方の同奨励賞への再度の応募はできません。

応募方法:下記事項をもれなく記入の上、日本吸着学会事務局に e-mail で送付して下さい。

1. 申請者氏名、2. 会員番号、3. 所属・学年・学位取得見込み年月・博士課程入学年月、4. 連絡先(住所、所属(研究室名まで記入))、TEL、FAX、e-mailアドレス、5. 指導教員氏名、6. これまでの日本吸着学会研究発表会における発表履歴、7. 他の経済支援状況(学術振興会特別研究員、育英会奨学金など)

8. 研究テーマ 9. 研究概要(1000字程度)

応募先および問い合わせ先:

日本吸着学会事務局 e-mail: info@j-ad.org 応募締切: 2018年4月末日 必着

平成 30 年度日本吸着学会賞受賞候補者推薦のお願いと要領

学術賞

賞状、副賞ならびに記念品の授与をもって表彰致します。受賞対象者は吸着における科学技術に関する一連の論 文、著作等、学術的研究成果が特に優れた正会員とし、1名程度を選考する予定です。

候補者をご推薦ください。自薦、他薦は問いません。推薦される方は下記の事項と論文のコピーを事務局にお送 りください。

<送付事項・書類>

1. 候補者氏名、2. 生年月日、3. 所属、4. 略歴(学歴、職歴、研究略歴)、5. 連絡先(住所、電話番号、 E-mail アドレスを含む)、6. 受賞対象研究名、7. 研究概要(800字以内)、8. 受賞対象研究に関連する論文、 著作等のリスト、9. 代表的な論文等の別刷りあるいはコピー(3件程度)

奨励賞

賞状、副賞ならびに記念品の授与をもって表彰致します。受賞対象者は受賞年度において45歳未満の正会員お よび維持会員である企業等に所属する者とし、3名程度を選考する予定です。選考はおおむね過去5年間に、原著 論文、著書、特許、学協会が主催する研究発表会・年会等における口頭発表およびポスター発表、社報、ニュース リリース等により対外的に発表された研究開発の成果に関して行います。

候補者をご推薦ください。自薦、他薦は問いません。推薦される方は下記の事項と業績のコピーを事務局にお送 りください。

<送付事項・書類>

1. 候補者氏名、2. 生年月日(年齢)、3. 所属、4. 略歴(学歴、職歴、研究略歴)、5. 連絡先(住所、電話 番号、E-mailアドレスを含む)、6. 受賞対象研究名、7. 研究概要(800字以内)、8. 対象となる業績のリスト、 9. 対象となる業績の別刷りあるいはコピー等(5件以内)

技術賞

賞状および記念品の授与をもって表彰致します。受賞対象は維持会員である法人に属する技術者または技術グ ループが開発した技術とし、実用歴、実施例を考慮して2件程度を選考する予定です。

候補技術および開発にあたった技術者(5名以内)をご推薦ください。自薦・他薦は問いません。推薦される方 は候補者に関する下記の事項を事務局にお送りください。

<送付事項・書類>

1.維持会員名、2.対象技術、3.対象技術の開発を担当した技術者名(原則5名以内。グループで開発にあたった場合は全員の職・氏名)、4.連絡先(住所、電話番号、E-mailアドレスを含む)5.設計図、試験成績書ある

いは学会発表など候補技術を証明するもの、6. 実用歴(納入先一覧で可)

●表彰式

2018年秋に開催予定の第32回研究発表会会期中に執り行います。

●受賞講演

学術賞および奨励賞の受賞者は、2018年秋開催予定の第32回研究発表会において、それぞれ受賞特別講演をお願いする予定です。技術賞受賞者は、受賞後に開催される吸着シンポジウム等での講演をお願いする予定です。

●送付先(問合せ先)

応募書類は事務局宛てにお送りください。

〒305-8565 茨城県つくば市東1-1-1中央第5

国立研究開発法人 産業技術総合研究所 化学プロセス研究部門内

日本吸着学会事務局(担当 遠藤 明)

(電話:029-861-4653 FAX:029-861-4660 E-mail:info@j-ad.org)

※メール添付による応募書類提出も受け付けます。但し、大きなサイズのファイルは送受信に支障が出る場合がご ざいますので、送信後には必ず送信の旨をご連絡下さいますようお願いします。

●締切

2018年4月末(事務局必着)

関連学会のお知らせ

日本膜学会第40年会のお知らせ

日本膜学会第40年会を下記の要領で早稲田大学にて開催いたします。例年通り人工膜、生体膜、ならびに境界領 域と、膜学の広範囲な内容を含む年会を企画しております。また、今回は40回の記念大会となるため、海外の膜 学会会長をお呼びして特別講演を行うとともに、人工膜、生体膜、境界領域で計5件のシンポジウムや企業からの 発表セッションを計画しております。基礎から応用まで膜の科学、技術に関心をお持ちの皆様のご参加とご発表(口 頭およびポスター発表)をお待ちしております。詳細は膜学会ホームページ(http://www.maku-jp.org/symposium/) にてお知らせいたします。会員でない皆様も、これを機に是非ともご参加、ご発表頂きたく案内申し上げます。ま た、学生による優秀な発表に対し学生賞を設けていますので、ふるって応募して下さい。ただし、学生賞の審査対 象はポスター発表に限ります。

記

開催日程:2018年5月8日(火、9日(水)
 開催会場:早稲田大学(西早稲田キャンパス 63号館)
 産:日本膜学会
 株 催:早稲田大学

日本膜学会第40年会プログラム

●韓国膜学会会長特別講演

Ъ

- ●台湾膜学会会長特別講演
- ●中国膜学会副会長特別講演
- ◆人工膜シンポジウム 1 「膜による水処理技術を展望する IX」 ~ 新たなる水処理膜と適用技術の開発 ~ オーガナイザー:川勝孝博(栗田工業)、熊野淳夫(東洋紡)、赤松憲樹(工学院大学)
- ◆人工膜シンポジウム 2 「社会実装を目指す CO₂分離を主としたガス分離膜の研究開発最前線」 オーガナイザー:谷口育雄(九州大学)
- ◆人工膜シンポジウム 3「水素社会の必要性と水素社会を支える膜技術」 オーガナイザー:山口猛央(東京工業大学)、上宮成之(岐阜大学)
- ◆生体膜シンポジウム「イオンチャネル・輸送体の細胞内 形質膜間トラフィッキングの分子メカニズム」 オーガナイザー:丸中良典 (京都府立医科大学)
- ◆境界領域シンポジウム「医療現場で活躍する膜様組織」 オーガナイザー:丸山徹(九州大学)、川上浩良(首都大学東京)

問合せ先

日本膜学会事務局第40年会係

〒113-0033 東京都文京区本郷 5-26-5-702

Tel & Fax : 03-3815-2818、E-mail:membrane@mua.biglobe.ne.jp

- 日本膜学会 会長 松山秀人
- 日本膜学会 第40年会組織委員長 川上浩良
 - 副組織委員長 丸中良典

φ

ф

維持会員一覧

φ

ф

Ŀe

ъ

Ъ

ф

維持会員として、以下の企業各社にご協力を頂いております。 (平成 29 年 10 月現在、50 音順) 株式会社アドール エア・ウォーター株式会社 MHI ソリューションテクノロジーズ株式会社 大阪ガス株式会社 大阪ガスケミカル株式会社 オルガノ株式会社 カルゴン カーボン ジャパン株式会社 カンタクローム・インスツルメンツ・ジャパン合同会社 株式会社キャタラー 株式会社クラレ 栗田工業株式会社 興研株式会社 IFE スチール株式会社 株式会社重松製作所 システムエンジサービス株式会社 水 ing 株式会社 株式会社島津製作所 株式会社西部技研 大陽日酸株式会社 月島環境エンジニアリング株式会社 帝人ファーマ株式会社 東ソー株式会社 東洋紡株式会社 ニチアス株式会社 フタムラ化学株式会社 富士シリシア化学株式会社 マイクロトラック・ベル株式会社 ミドリ安全株式会社 ローム・アンド・ハース・ジャパン株式会社 ユニオン昭和株式会社

フロントラインの掲載について

日本吸着学会の会員の皆様の研究の紹介と解説のため、『フロントライン』 を設けることにしました。会員の皆様の積極的な投稿をお待ちしております。

平成 30 年 Adsorption News 編集委員長 松本明彦

編集委員

委員	長	松本	明彦	(豊橋技術科学大学)			
委	員	伊藤	博光	(豊橋技術科学大学)	大場	友則	(千葉大学)
		上村	佳大	(産業技術総合研究所)	近藤	篤	(東京農工大学)
		瀬戸山	山徳彦	(株式会社 豊田中央研究所)	田中	秀樹	(京都大学)
		飛騨里	予龍也	(大陽日酸株式会社)	山根	康之	(大阪ガスケミカル株式会社)
							(五十音順)

Adsorption News Vol.31 No.4 (2018) 通卷 No.123 2018 年 1 月 31 日発行

事務局 〒305-8565 茨城県つくば市東 1 − 1 − 1 中央第 5
 国立研究開発法人 産業技術総合研究所 化学プロセス研究部門内
 Tel: 029-861-4653 Fax: 029-861-4660 E-mail: info@j-ad.org

編集伊藤博光(豊橋技術科学大学)

Tel: 0532-44-6815 Fax: 0532-44-6929 E-mail: hiro_ito@ens.tut.ac.jp 日本吸着学会ホームページ http://www.j-ad.org/

印刷 〒850-0875 長崎県長崎市栄町6-23 株式会社昭和堂 Tel:095-821-1234 Fax:095-823-8740

General Secretary

THE JAPAN SOCIETY ON ADSORPTION (JSAD) National Institute of Advanced Industrial Science and Technology (AIST) Research Institute for Chemical Process Technology, Central 5, 1–1,Higashi, Tsukuba, Ibaraki 305-8565, JAPAN

Tel: +81-29-861-4653 Fax: +81-29-861-4660 E-mail: info@j-ad.org

Editorial Chairman

Professor Akihiko MATSUMOTO Graduate School of Engineering, Toyohashi University of Technology 1-1, Hibarigaoka Tempaku-cho, Toyohashi 441-8580, JAPAN Tel : +81-53-244-6811 E-mail : aki@ens.tut.ac.jp

Editor

Hiromitsu ITO, Toyohashi University of Technology Tel:+81-53-244-6815 E-mail:hiro_ito@ens.tut.ac.jp